• Title/Summary/Keyword: Channel Image

Search Result 1,032, Processing Time 0.027 seconds

Fabrication and Characterization of Floating-Gate MOSFET with Multi-Gate and Channel Structures for CMOS Image Sensor Applications (다중 Gate 및 Channel 구조를 갖는 CMOS 영상 센서용 Floating-Gate MOSFET 소자의 제작 및 특성 평가)

  • Ju, Byeong-Gwon;Sin, Gyeong-Sik;Lee, Yeong-Seok;Baek, Gyeong-Gap;Lee, Yun-Hui;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.1
    • /
    • pp.17-22
    • /
    • 2001
  • The floating-gate MOSFETs were fabricated by employing 1.5 m n-well CMOS process and their optical-electrical properties were characterized for the application to CMOS image sensor system. Based on the simulation of energy band diagram and operating mechanism of parasitic BJT were proposed as solutions for the increase of photo-current value. In order to realize them, MOSFETs having multi-gate and channel structures were fabricated and 60% increase in photo-current was achieved through enlargement of depletion layer and parallel connection of parasitic BJTs by channel division.

  • PDF

Quantitative Analysis of Modified Fermi-Direc Filter applied to Clinical MR Image (임상 MR영상에 적용된 변형 Fermi-Direc필터의 정량적 평가)

  • Kim, Ki-Hong;Kim, Dong-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.225-230
    • /
    • 2009
  • Filtering has been used to improve the image quality not only in MRI but in most image processing fields. In this paper, modified Fermi-Direc filter was transformed in various shapes, and then the optimum shape was designed. In addition, Newly made filter was applied in real clinic, which showed the obvious improvement in image quality. In conclusion, filtered image was superior to original image in contrast and sharpness. Then, this was proved by the histogram of R, G, B channel used for the quantitative analysis.

Turbulent-image Restoration Based on a Compound Multibranch Feature Fusion Network

  • Banglian Xu;Yao Fang;Leihong Zhang;Dawei Zhang;Lulu Zheng
    • Current Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.237-247
    • /
    • 2023
  • In middle- and long-distance imaging systems, due to the atmospheric turbulence caused by temperature, wind speed, humidity, and so on, light waves propagating in the air are distorted, resulting in image-quality degradation such as geometric deformation and fuzziness. In remote sensing, astronomical observation, and traffic monitoring, image information loss due to degradation causes huge losses, so effective restoration of degraded images is very important. To restore images degraded by atmospheric turbulence, an image-restoration method based on improved compound multibranch feature fusion (CMFNetPro) was proposed. Based on the CMFNet network, an efficient channel-attention mechanism was used to replace the channel-attention mechanism to improve image quality and network efficiency. In the experiment, two-dimensional random distortion vector fields were used to construct two turbulent datasets with different degrees of distortion, based on the Google Landmarks Dataset v2 dataset. The experimental results showed that compared to the CMFNet, DeblurGAN-v2, and MIMO-UNet models, the proposed CMFNetPro network achieves better performance in both quality and training cost of turbulent-image restoration. In the mixed training, CMFNetPro was 1.2391 dB (weak turbulence), 0.8602 dB (strong turbulence) respectively higher in terms of peak signal-to-noise ratio and 0.0015 (weak turbulence), 0.0136 (strong turbulence) respectively higher in terms of structure similarity compared to CMFNet. CMFNetPro was 14.4 hours faster compared to the CMFNet. This provides a feasible scheme for turbulent-image restoration based on deep learning.

Efficient Single Image Dehazing by Pixel-based JBDCP and Low Complexity Transmission Estimation (저 복잡도 전달량 추정 및 픽셀 기반 JBDCP에 의한 효율적인 단일 영상 안개 제거 방법)

  • Kim, Jong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.977-984
    • /
    • 2019
  • This paper proposes a single image dehazing that utilizes the transmission estimation with low complexity and the pixel-based JBDCP (Joint Bright and Dark Channel Prior) for the effective application of hazy outdoor images. The conventional transmission estimation includes the refinement process with high computational complexity and memory requirements. We propose the transmission estimation using combination of pixel- and block-based dark channel information and it significantly reduces the complexity while preserving the edge information accurately. Moreover, it is possible to estimate the transmission reflecting the image characteristics, by obtaining a different air-light for each pixel position of the image using the pixel-based JBDCP. Experimental results on various hazy images illustrate that the proposed method exhibits excellent dehazing performance with low complexity compared to the conventional methods; thus, it can be applied in various fields including real-time devices.

The Facial Area Extraction Using Multi-Channel Skin Color Model and The Facial Recognition Using Efficient Feature Vectors (Multi-Channel 피부색 모델을 이용한 얼굴영역추출과 효율적인 특징벡터를 이용한 얼굴 인식)

  • Choi Gwang-Mi;Kim Hyeong-Gyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1513-1517
    • /
    • 2005
  • In this paper, I make use of a Multi-Channel skin color model with Hue, Cb, Cg using Red, Blue, Green channel altogether which remove bight component as being consider the characteristics of skin color to do modeling more effective to a facial skin color for extracting a facial area. 1 used efficient HOLA(Higher order local autocorrelation function) using 26 feature vectors to obtain both feature vectors of a facial area and the edge image extraction using Harr wavelet in image which split a facial area. Calculated feature vectors are used of date for the facial recognition through learning of neural network It demonstrate improvement in both the recognition rate and speed by proposed algorithm through simulation.

A Study on the Wavelet based Still Image Transmission over the Wireless Channel (무선채널환경에서 웨이블릿 기반 정지영상 전송에 관한 연구)

  • Nah, Won;Baek, Joong-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.179-182
    • /
    • 2001
  • This paper has been studied a wavelet based still image transmission over the wireless channel. EZW(Embedded Zerotree Wavelet) is an efficient and scalable wavelet based image coding technique, which provides progressive transfer of signal resulted in multi-resolution representation. It reduces therefore the reduce cost of storage media. Although EZW has many advantages, it is very sensitive on error. Because coding are performed in subband by subband, and it uses arithmetic coding which is a kind of variable length coding. Therefore only 1∼2bit error may degrade quality of the entire image. So study of error localization and recovery are required. This paper investigates the use of reversible variable length codes(RVLC) and data partitioning. RVLC are known to have a superior error recovery property due to their two-way decoding capability and data partitioning is essential to applying RVLC. In this work, we show that appropriate data partitioning length for each SNR(Signal-to-Noise Power Ratio) and error localization in wireless channel.

  • PDF

Adaptive White Point Extraction based on Dark Channel Prior for Automatic White Balance

  • Jo, Jieun;Im, Jaehyun;Jang, Jinbeum;Yoo, Yoonjong;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.383-389
    • /
    • 2016
  • This paper presents a novel automatic white balance (AWB) algorithm for consumer imaging devices. While existing AWB methods require reference white patches to correct color, the proposed method performs the AWB function using only an input image in two steps: i) white point detection, and ii) color constancy gain computation. Based on the dark channel prior assumption, a white point or region can be accurately extracted, because the intensity of a sufficiently bright achromatic region is higher than that of other regions in all color channels. In order to finally correct the color, the proposed method computes color constancy gain values based on the Y component in the XYZ color space. Experimental results show that the proposed method gives better color-corrected images than recent existing methods. Moreover, the proposed method is suitable for real-time implementation, since it does not need a frame memory for iterative optimization. As a result, it can be applied to various consumer imaging devices, including mobile phone cameras, compact digital cameras, and computational cameras with coded color.

Development of Retina Photographing and Multi Channel Image Acquisition System for Thickness Measurement of Retina (망막 두께 측정을 위한 망막 촬영 및 다채널 영상획득장치 개발)

  • 양근호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.13-17
    • /
    • 2004
  • In order to measure the retina thickness, the retina photographing system and the multi-channel high speed image data acquisition system is developed. This system requires the optical processing techniques and the high speed image processing techniques. The HeNe laser beam is projected the retina in artificial eye and then we sensed the reflected laser signal using APD array. The laser projection system on retina using optical instruments is implemented. In order to project the plane laser beam on retina, laser photographing system used the polygon mirror for horizontal scanning and the galvano mirror for vertical scanning. We acquired retina images in each channel of APD array, transferred computer using PCI interface the image data after real-time A/D converting.

  • PDF

PSNR Enhancement in Image Streaming over Cognitive Radio Sensor Networks

  • Bahaghighat, Mahdi;Motamedi, Seyed Ahmad
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.683-694
    • /
    • 2017
  • Several studies have focused on multimedia transmission over wireless sensor networks (WSNs). In this paper, we propose a comprehensive and robust model to transmit images over cognitive radio WSNs (CRWSNs). We estimate the spectrum sensing frequency and evaluate its impact on the peak signal-to-noise ratio (PSNR). To enhance the PSNR, we attempt to maximize the number of pixels delivered to the receiver. To increase the probability of successful image transmission within the maximum allowed time, we minimize the average number of packets remaining in the send buffer. We use both single- and multi-channel transmissions by focusing on critical transmission events, namely hand-off (HO), No-HO, and timeout events. We deploy our advanced updating method, the dynamic parameter updating procedure, to guarantee the dynamic adaptation of model parameters to the events. In addition, we introduce our ranking method, named minimum remaining packet best channel selection, to enable us to rank and select the best channel to improve the system performance. Finally, we show the capability of our proposed image scrambling and filtering approach to achieve noticeable PSNR improvement.

Zero-Watermarking Algorithm in Transform Domain Based on RGB Channel and Voting Strategy

  • Zheng, Qiumei;Liu, Nan;Cao, Baoqin;Wang, Fenghua;Yang, Yanan
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1391-1406
    • /
    • 2020
  • A zero-watermarking algorithm in transform domain based on RGB channel and voting strategy is proposed. The registration and identification of ownership have achieved copyright protection for color images. In the ownership registration, discrete wavelet transform (DWT), discrete cosine transform (DCT), and singular value decomposition (SVD) are used comprehensively because they have the characteristics of multi-resolution, energy concentration and stability, which is conducive to improving the robustness of the proposed algorithm. In order to take full advantage of the characteristics of the image, we use three channels of R, G, and B of a color image to construct three master shares, instead of using data from only one channel. Then, in order to improve security, the master share is superimposed with the copyright watermark encrypted by the owner's key to generate an ownership share. When the ownership is authenticated, copyright watermarks are extracted from the three channels of the disputed image. Then using voting decisions, the final copyright information is determined by comparing the extracted three watermarks bit by bit. Experimental results show that the proposed zero watermarking scheme is robust to conventional attacks such as JPEG compression, noise addition, filtering and tampering, and has higher stability in various common color images.