• Title/Summary/Keyword: Change-point estimator

Search Result 48, Processing Time 0.031 seconds

Nonparametric estimation of the discontinuous variance function using adjusted residuals (잔차 수정을 이용한 불연속 분산함수의 비모수적 추정)

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.111-120
    • /
    • 2016
  • In usual, the discontinuous variance function was estimated nonparametrically using a kernel type estimator with data sets split by an estimated location of the change point. Kang et al. (2000) proposed the Gasser-$M{\ddot{u}}ller$ type kernel estimator of the discontinuous regression function using the adjusted observations of response variable by the estimated jump size of the change point in $M{\ddot{u}}ller$ (1992). The adjusted observations might be a random sample coming from a continuous regression function. In this paper, we estimate the variance function using the Nadaraya-Watson kernel type estimator using the adjusted squared residuals by the estimated location of the change point in the discontinuous variance function like Kang et al. (2000) did. The rate of convergence of integrated squared error of the proposed variance estimator is derived and numerical work demonstrates the improved performance of the method over the exist one with simulated examples.

A Study on Change-Points in System Reliability

  • Kwang Mo Jeong
    • Communications for Statistical Applications and Methods
    • /
    • v.1 no.1
    • /
    • pp.10-19
    • /
    • 1994
  • We study the change-point problem in the context of system reliability models. The maximum likelihood estimators are obtained based on the Jelinski and Moranda model. To find the approximate distribution of the change-point estimator, we suggest of parametric bootstrap method in which the estimators are substituted in the assumed model. Through an example we illustrate the proposed method.

  • PDF

Application of Bootstrap Method for Change Point Test based on Kernel Density Estimator

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.107-117
    • /
    • 2004
  • Change point testing problem is considered. Kernel density estimators are used for constructing proposed change point test statistics. The proposed method can be used to the hypothesis testing of not only parameter change but also distributional change. Bootstrap method is applied to get the sampling distribution of proposed test statistic. Small sample Monte Carlo Simulation were also conducted in order to show the performance of proposed method.

  • PDF

Comparison of multiscale multiple change-points estimators (SMUCE와 FDR segmentation 방법에 의한 다중변화점 추정법 비교)

  • Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.4
    • /
    • pp.561-572
    • /
    • 2019
  • We study false discovery rate segmentation (FDRSeg) and simultaneous multiscale change-point estimator (SMUCE) methods for multiscale multiple change-point estimation, and compare empirical behavior via simulation. FSRSeg is based on the control of a false discovery rate while SMUCE used for the multiscale local likelihood ratio tests. FDRSeg seems to work best if the number of change-points is large; however, FDRSeg and SMUCE methods can both provide similar estimation results when there are only a small number of change-points. As a real data application, multiple change-points estimation is done with the well-log data.

NONPARAMETRIC ESTIMATION OF THE VARIANCE FUNCTION WITH A CHANGE POINT

  • Kang Kee-Hoon;Huh Jib
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.1
    • /
    • pp.1-23
    • /
    • 2006
  • In this paper we consider an estimation of the discontinuous variance function in nonparametric heteroscedastic random design regression model. We first propose estimators of the change point in the variance function and then construct an estimator of the entire variance function. We examine the rates of convergence of these estimators and give results for their asymptotics. Numerical work reveals that using the proposed change point analysis in the variance function estimation is quite effective.

Estimation of Change Point in Process State on CUSUM ($\bar{x}$, s) Control Chart

  • Takemoto, Yasuhiko;Arizono, Ikuo
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.3
    • /
    • pp.139-147
    • /
    • 2009
  • Control charts are used to distinguish between chance and assignable causes in the variability of quality characteristics. When a control chart signals that an assignable cause is present, process engineers must initiate a search for the assignable cause of the process disturbance. Identifying the time of a process change could lead to simplifying the search for the assignable cause and less process down time, as well as help to reduce the probability of incorrectly identifying the assignable cause. The change point estimation by likelihood theory and the built-in change point estimation in a control chart have been discussed until now. In this article, we discuss two kinds of process change point estimation when the CUSUM ($\bar{x}$, s) control chart for monitoring process mean and variance simultaneously is operated. Throughout some numerical experiments about the performance of the change point estimation, the change point estimation techniques in the CUSUM ($\bar{x}$, s) control chart are considered.

Locating the Change Point of Mean Residual Life of Certain Life Distributions

  • Li, Xiaohu
    • International Journal of Reliability and Applications
    • /
    • v.3 no.2
    • /
    • pp.91-98
    • /
    • 2002
  • A class of life distributions, whose mean residual life keeps stable at its earlier phase and then starts to decrease in time, is proposed to model the life of an element haying survived its burn-in. A strongly consistent estimator and a nonparametric testing procedure are developed to locate the occurrence of the change-point of the mean residual life. Finally, some numerical simulations are employed to be an illustration as well.

  • PDF

Tests for the Change-Point in the Zero-Inflated Poisson Distribution

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.387-394
    • /
    • 2004
  • Zero-Inflated Poisson distribution is Poisson distribution with excess zeros. Recently defects of product hardley happen in the manufacturing process. In this case it is desirable to apply to the Zero-Inflated Poisson distribution rather than Poisson. Our target of this paper is to study the tests for changes of rate of defects after the unknown change-point. We are going to compare the powers of the two proposed tests with likelihood tests by the simulations.

  • PDF

A Generalized MLE of the Process Change Point

  • Lee Jaeheon;Park Changsoon
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.436-441
    • /
    • 2004
  • Knowing the time of the process change could lead to quicker identification of the responsible special cause and less process down time, and it could help to reduce the probability of incorrectly identifying the special cause. In this paper, we propose a generalized maximum likelihood estimate. (MLE) of the process change point when a control chart with variable sample size (VSS) scheme signals a change in the process mean, and evaluate the performance of this estimator when it mi used with a VSS EWMA chart.

  • PDF

Change point estimators in monitoring the parameters of an IMA(1,1) model (누적이동평균(1,1) 모형에서 공정 변화시점의 추정)

  • Lee, Ho-Yun;Lee, Jae-Heon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.435-443
    • /
    • 2009
  • Knowing the time of the process change could lead to quicker identification of the responsible special cause and less process down time, and it could help to reduce the probability of incorrectly identifying the special cause. In this paper, we propose the maximum likelihood estimator (MLE) for the process change point when a control chart is used in monitoring the parameters of a process in which the observations can be modeled as a IMA(1,1).

  • PDF