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NONPARAMETRIC ESTIMATION OF THE VARIANCE
FUNCTION WITH A CHANGE POINT

Kee-HooN Kang! anD JiB Hun?

ABSTRACT

In this paper we consider an estimation of the discontinuous variance
function in nonparametric heteroscedastic random design regression model.
We first propose estimators of the change point in the variance function
and then construct an estimator of the entire variance function. We exam-
ine the rates of convergence of these estimators and give results for their
asymptotics. Numerical work reveals that using the proposed change point
analysis in the variance function estimation is quite effective.
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Keywords. Discontinuity point, jump size, nonparametric regression, variance estimation,

one-sided kernel, rate of convergence.

1. INTRODUCTION

In most nonparametric regression function estimation, the variance of errors
is assumed to be a homogeneous or a heterogeneous smooth function. Estima-
tion of this variance function has great meaning because it is important in its
own right and in various applications. An estimation of the variance function
is needed in some bandwidth selection procedures, weighted least squares esti-
mation, constructions of confidence and prediction intervals for mean functions,
quality control, etc. These applications are discussed in Carroll (1982), Carroll
and Ruppert (1988) and Miller (1988). Variance function estimation is impor-
tant for inference purposes as well as risk management based on second moments
of financial data. Volatility in financial markets corresponds to variance in con-
ventional statistical research areas. Recently, relative high attention is paid to
capture and explain the variation of the second moments of financial data.
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Extensive literature exists on nonparametric methods for variance function
estimation in nonparametric regression, much of which is based on using squared
residuals from a nonparametric fit of the mean function. For the homogeneous
error variance, these methods include those of Rice (1984), Gasser et al. (1986)
and Hall et al. (1990). Their estimates are based on the squared differences of
the data of various orders. Miiller and Stadtmiiller (1987) provided an estimation
of the heteroscedasticity by using Gasser-Miiller type kernel weighted averages
of initial local variance estimates and showed that the estimator is uniformly
consistent. Hall and Carroll (1989) studied the influence of the smoothness of the
mean function on the convergence rate of the nonparametric variance estimator.
Their variance function estimator is a Nadaraya-Watson type estimator based on
squared residuals and results reveal that the accuracy of estimating the variance
function depends on the information of the mean function. Ruppert et al. (1997)
considered a local polynomial estimator for the variance function and gave results
for the bias and the variance of the estimator.

In this paper, we consider an approach for estimating the variance function
in the following random design regression model:

Y = m(X;) + v} (Xi)es, i =1,...,7, (1.1)

where m(z) = E(Y|X = z) is the mean regression function, v(z) is the con-
ditional variance of Y given X = z and conditional on Xi,...,X,, &’s are
independent random variables with mean 0 and variance 1. Let f be the design
density of X with support [0, 1]. Here, the difference from the former works is we
do not assume that the variance function is continuous. That is, we assume that
a change point exists for the variance function v at some point 7 in the interior of
the support of f. One should note that relatively little attention has been given
to the fact that the variance function may not be continuous, compared to its
importance. .

Our approach on variance function estimation is similar to the one for estimat-
ing the discontinuous regression function, which was discussed in Miiller (1992)
and in Loader (1996). One-sided kernel regression estimates based on squared
residuals are used to estimate the location of a change point and the jump size.
The resulting estimator of the change point is shown to be consistent with con-

! since we use the one-sided kernel which has a non-zero

vergence rate of order n~
value at the left end of the support.
For estimating the variance function itself, we use a Nadaraya-Watson type

estimator for the data set splitted by the estimated location of the change point.
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In terms of integrated squared error, we show that the convergence rate of the
estimated variance function does not depend on the rate of convergence of the
estimated change point.

This paper is organized as follows. In Section 2, the assumptions used in this
paper are stated. The estimators of the change point of the variance function
and the variance function itself are proposed. Section 3 investigates the theoret-
ical properties of these estimators. Their numerical properties are examined in
Section 4. Technical arguments are deferred to Section 5.

2. ASSUMPTIONS AND ESTIMATORS

We begin by stating a set of assumptions for the unknown functions in the
model (1.1).

(A.1) There exists a constant C such that
lv(z) — v(y)| < C|z —y| whenever (z —7)(y —7) >0, (2.1)

i.e. v satisfies the Lipschitz condition of order 1 over [0,7) and (7,1]. The jump
size at the change point 7 in v is given by A = v (7) — v_(7), where v (1) =
limy 4+ v(z) and v_(7) = limz—,_ v(z). Without loss of generality, we may
assume 0 < A < oo since the case of —0o < A < 0 can be treated in the same
way.

(A.2) The design density f is supported on [0, 1] with inf ¢ 1) f(x) > 0 and sat-
isfies the Lipschitz condition of order 1 over [0, 1].

(A.3) The regression function m satisfies the Lipschitz condition of order 1 over
[0,1].

We apply a Nadaraya-Watson smoother with a one-sided kernel function to
the squared residuals to detect the location of the change point of the variance
function. Hirdle (1990, 1991) also estimated the variance function v(z) by using
a Nadaraya-Watson kernel smoother with different types of the squared residuals
to get the confidence intervals for m(z). To get the residuals, we first define

1 — X;,—z 1 & X, —z
m = — L J Y: /| — L J
m(z) nhlz ( hi ) J/nhlz ( hi >
as the estimator of m, where L is a nonnegative kernel function with support
[~1,1] and h; = hip is a sequence of bandwidths satisfying: L and h; satisfy
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(A.4) and (A.5), respectively.

(A.4) The function L is symmetric and satisfies the Lipschitz condition of order
1 over [—1,1].

(A5) h1 — 0 and hy/logn — oo as n — .
Using the squared residuals RL ={Y; - m(X;)}?, i=1,...,n, we define
n

. 1 Xi—z\ 5 /1 <« X; —
v+(m)=n—h22;K( h2m>&/%;K< ). e

1=

i=1

Here, K is a kernel function with support [0,1] and hy = hs, is a sequence of
bandwidths, which satisfy the following assumptions:

(A.6) The function K satisfies the Lipschitz condition of order 1 over [0,1] and
K(0) > 0, K(u) >0 for 0 < u < 1 with [ K (u)du = 1.

(A.7) hg — 0, ha/logn — oo and nhi — 0 as n — oo.

The estimators U4 (z) and U_(z) are based only on the residuals at the right
side and the left side of x, respectively. We estimate the jump size at a point
z by taking the difference of these two estimators, A(z) = 74 (z) - v_(z). A
reasonable estimator 7 of 7 is the value of  that maximizes ﬁ(x) Let Q C (0,1)
be a closed interval such that 7 € Q). Define

7 = inf {z €Q| Az) = ggg‘&(x)}

for the location of the change point 7. Here, we have assumed continuity of
the regression function m in (A.3). When both the regression function and the
variance function have the same change point, 7 can be estimated based on an
estimation of the regression function.

Now, we propose an estimator for the variance function by using the estimated
location of the change point 7. Let W be a kernel function with support [—1, 1]
satisfying the following condition.

(A.8) The function W is a symmetric probability density function and satisfies
the Lipschitz condition of order 1 over [—1,1].
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Using the squared residuals ﬁ,;, i=1,...,n, we define

nhZW*< " ) /nhiZ:;W*<X1

Here, W* is defined by

z ?) L (24)

IT<u<z+h), 7T<zc<T+h, (2.5)

. x)’ otherwise,
with a sequence of bandwidths h = h,, satisfying the following condition.

(A.9) h—0and h/logn — oo as n — 0.

3. AsymMPTOTIC PROPERTIES

The following theorem describes weak convergence of the sequence of the
process {on(z)| — M < z < M}, where

©n(z) = nhy {ﬁ('r + i—) — 5(7)} (3.1)

and M < oo. The process ¢, lies in the space, denoted by D([—M, M]), of
functions defined on [—M, M] having, at most, finitely many discontinuities.
Let 2 denote weak convergence in the space D([-M,M]) and let k(z) =
E[{Y —m(X)}*| X =z]. To obtain the theorem below, consider the follow-
ing additional assumptions.

(A.10) The function s satisfies the Lipschitz condition of order 1 over [0, 1].
(A.11) E(JY]**¢) X = ) < oo for all z and some positive (.

THEOREM 3.1. Suppose that assumptions (A.1)-(A.7), (A.10) and (A.11)
are satisfied. Then,
w
onl(z) 2> p(2) = ~AK(0)|2] + oW (2), (3.2)
where W (z) is the two-sided Brownian motion defined in Bhattacharya and Brock-
well (1976) and
4k(T)

7=\ F KO (3.3)
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REMARK 3.1. Since the conditional central fourth moment « depends on
v, it is highly possible that x also has a change point at 7. In that case, the
asymptotic variance part of the limit process ¢ in (3.2) is slightly changed. Define
k4 (7) = limz—r4+ k(z) and k_(7) = limz_,,— k(z). Then, £(7) in (3.3) is replaced
by k4+(7) when z > 0 and by x_(7) when z < 0.

Next, we describe the asymptotic distribution of 7. For doing this, we first
discuss that the maximizer (minimizer) of the limit of the process ¢, when A > 0
(A < 0) exists with probability one. In the case where A > 0, that follows directly
from Remark 5.3 in Bhattacharya and Brockwell (1976), where it is argued that
the maximizer of a two-sided Brownian motion with an additional drift is unique
with probability one. The other case where A < 0 is analogous. The following
corollary describes the asymptotic distribution of 7:

COROLLARY 3.1. Suppose that the assumptions in Theorem 3.1 are satis-

fied. Then,

argmax ¢(z), when A > 0,
D 2€(—00,00)

(7 -1 = argmin ¢(z), when A < 0.
z€(—00,00)

Raimondo (1998) showed that the minimax optimal rate for the location prob-
lem is n~! for a class of regression functions. Although the interesting function
is the variance, our proposed estimator provides the rate of convergence n~!
according to Corollary 3.1.

We now turn to the asymptotic property of the estimator of the variance
function. Theorem 3.2 gives the rate of global L, convergence of the estimator

v(+;7) in (2.4).

THEOREM 3.2. Suppose that assumptions (A.1)-(A.11) are satisfied. Then,
forp=>1,

/01 [9(z;7) — v(z)|Pdz
o (38 o { ()« (5
7 = 70p(1) + [7 ~ 7["0p(7F) + Op {h,, + (ﬁ“%)}

(3.4)
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The first two terms in (3.4) depend on the rate of global Lo, convergence of
the estimator m. See (5.20) for more details. Since a Nadaraya-Watson type
smoother guarantees the nonnegativity of the estimated variance function based
on squared residuals, we proposed that type of smoother in (2.4). As a result, the
order of the squared bias in the last term is AP rather than A?P. In the L, sense, if
we choose two bandwidths as hy ~ h, the rate in (3.4) is then Op{h?+logn/(nh)}.
Thus minimizing the terms in (3.4) does not depend on the rate of the estimator
7. This implies that the estimator ¥(-;7) has exactly the same rate as U(:;7),
when the location of the change point is known.

4. NUMERICAL PROPERTIES

To investigate the practical performance of the proposed estimator defined
in Section 3, we carried out a simulation study. For that, response-predictor
pairs (X;,Y;), 7 = 1,...,n, are generated according to the prescription (1.1) for
various m and v. Kernel functions L(u) = (15/16)(1 — v?)2I(ju] < 1) and
K(u) = (15/8)(1 — u?)?I(0 < u < 1) are used to estimate the mean regression
function and the change point, respectively. For the estimation of the variance
function, the kernel function W is taken to be the same as L.

In this section, we shall report only results for the following four settings. We
obtained very similar results for other cases. Cases (a), (b) and (c) represent
typical types of regression functions and have homogeneous variance functions
with a change point. Case (d) represents a nonhomogeneous variance function
with a change point.

(a) mi(z) =z, vi{z) = 0.01 I(z < 0.5) + 0.09 I(z > 0.5).

(b) ma(z) = 4z(1 — x), va(z) = 0.01 I(z < 0.75) + 0.16 I(z > 0.75).

(c) ma(z) = 52(222 — 3z + 1), v3(z) = 0.49 I(x < 0.5) +2.25 I(z > 0.5).

(d) my(x) = 4z + 4exp{~100(x — 0.5)}, va(x) = (x%/9) I(z < 0.55) + 4(1 —
z)2 I{(xz > 0.55). '

Throughout, the distribution of the predictor variable is assumed to be uni-
form in (0,1) and 7 is estimated on [h,1 — h]. The integrated squared error
(ISE), a measure of performance, is estimated on the interval [0, 1] by using the
trapezoidal rule. Average values are obtained from 1000 simulations.

Table 4.1 presents the mean integrated squared errors (MISE) for two types
of variance function estimates. One is based on our approach with change point
estimation and the other is nonparametric estimation without any change point
estimation. The sample sizes considered here are 500 and 1000. From this table,
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in terms of the MISE, our estimates dominate the variance estimates without
change point estimation and the improvement gets larger as the sample size is
increased. In fact, our estimate needs to be compared with other estimates that
also reflect the existence of a change point in the variance function. However, to
the best of our knowledge, such estimates have not yet been published.

TABLE 4.1 Simulation results

Model | n (i) (i1 (13)
500 | 0.0187 | 0.0163 | 0.5212
(a) (0.0002) | (0.0003) | (0.0016)

1000 | 0.0132 | 0.0089 | 0.5086
(0.0001) | (0.0001) | (0.0011)
500 | 0.0439 | 0.0432 | 0.7671
(b) (0.0006) | (0.0010) | (0.0010)
1000 | 0.0305 | 0.0244 | 0.7586
(0.0003) | (0.0005) | (0.0007)
500 | 10.8682 | 9.3584 | 0.5255
(c) (0.1181) | (0.2066) | (0.0018)
1000 | 7.8781 | 50637 | 0.5114
(0.0726) | (0.1161) | (0.0013)
500 | 0.8914 | 06569 | 0.5561
(d) (0.0072) | (0.0129) | (0.0004)
1000 | 0.6412 | 0.3457 | 0.5526
(0.0039 ) | (0.0071) | (0.0002)

NoTE : Average integrated squared errors over 500 Tuns from four regression curves.
Column (i) corresponds to average integrated squared errors of the variance func-
tion estimates over 500 runs from each model without estimating the change point
and the jump size. Column (ii) corresponds to the estimates with a change-point
analysis. Columns (i) and (i) are multiplied by 10°. Column (iii) contains average
values of 7. In all columns, the standard errors are in brackets.

The average values of the estimated change point 7 and their standard errors
are also summarized in Table 4.1. Figure 4.1 illustrates frequency plots for the
1000 values of 7 for models (b) and (d). For model (b), the proposed procedure
results in a value of ¥ that is somewhat larger than the true value of 0.75. The
distribution of 7 for model (d) is more concentrated toward its target value, which
makes the whole procedure more significant.
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FIGURE 4.1 Distributions of ¥ from models (b) and (d).

NOTE : Plots in the left column come from model (b) and those in the right column
from model (d). In each column, the upper panel corresponds to n = 500 and the
lower panel corresponds to n = 1000. The vertical azis represents the frequency.

For model (d), Figure 4.2 depicts raw data, estimates of the mean function and
estimates of the variance function with and without an estimated change point.
The data set used here is the one which gives the 75 percentile of the integrated
squared errors of the estimates without change point estimation among 1000 runs.
Note that the proposed estimates of the variance function are the same as those
without the change point except for the area close to the change point. Plots for
the other models give the similar results, so they are not included here.
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FIGURE 4.2 Plots from a data set of model (d).

NOTE : The data set corresponds to the one which gives the 75 percentile of the in-
tegrated squared errors of the estimates without any change-point estimation from
among 500 simulations. The upper panel depicts the raw data (solid) and esti-
mated mean function (bold solid) while the lower panel illustrates the true variance
function (solid), the estimated variance function with a change-point estimation
(dot-and-dashed) and the estimated variance function without change-point esti-
mation (dotted).

We apply our approach to the real data set called LIDAR (LIght Detection
And Ranging), which was analyzed by Ruppert et al. (1997). They used lo-
cal polynomial fit to estimate the variance function. Figure 1(b) in Ruppert et
al. (1997) indicates that a change point, which might be close to 650 or 680, may
exist in the variance function. Figure 4.3 presents the data and the resulting
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variance estimates, which has a shape that is slightly different from the shape
of Figure 1(c) in Ruppert et al. (1997). Our approach results in a change point
estimate of 682.9 and a corresponding jump size of 0.0158. This change point es-
timate seems plausible from the plot of the raw data although Gibbs phenomenon
seems to exist near the change point.
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FIGURE 4.3 Plots for LIDAR data.

NoOTE : The upper panel depicts the raw data (solid) and estimated mean function
(bold solid) while the lower panel illustrates the estimated variance function with
a change-point estimation (dot-and-dashed) and the estimated variance function
without change-point estimation (dotted).

An important practical problem in change point analysis is the selection of
the bandwidths. However, we do not have any optimal theory for that yet. In all
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the procedures to estimate the regression function and the variance function in
this section, we used a cross-validation criterion over a fine grid of bandwidths,
which does not require any auxiliary stage of estimation.

5. PROOFS

LEMMA 5.1. Assume that a bandwidth b satisfies the requirement that b — 0
and b/logn — oo as n — oo. Let n(X;,€;), which depend on X; and ¢;, be
independent random variables with mean 0 and bounded second moments and let
K be a kernel function satisfying the Lipschitz condition of order 1 over a compact

set [r,s] wherer <0, s >0 and r < s. Then,
9]-or ().
nb

1 e~ (X
an’C< )n(Xj,sj)/%;lC(
PROOF. According to Theorem 1.2 in Stute (1982),

where Sy = [0, 1] is the support of f.
B logn
an/c( = Op <\/W+b>, (5.1)

S
/ K(u)du, 0 <z < —crb,

sup
:l:GSf

) - przf(2)

sup
CBESf

where
S
UK,z = K(u)du, —crb <z <1— csb,

CS
/ K(u)du, 1 —csb <z <1,
with 0 < ¢ < 1. By (5.1), it is enough to show that

= ‘ _ logn
nbux, nf ;’C< )n(Xj’Ej) N OP( nb )

1 = X;—zx
gn(z) = m;’c( ]b )U(Xjafj)~

Let D,, be a discretized grid of Sy, which is given by D, = {jé,| 7 =0,...,1/6,}
where §,, = O(n™?) for some positive a. Then, we obtain

sup
z€S¢

Define

sup |gn(2)| < sup [gn(y)|+  sup  |gn(z) — gn(y)l- (5.2)
€Sy yeD, z,y:le—y|<dn
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We take a to be large enough to ensure that the second term in (5.2) is neg-
ligible compared to the first one. Now, we will show that the first term is

Op{+/logn/(nb)}. If we define 7j(X;, £;) = n(X;, ;)1 (In(X;,¢;)| < /nb/logn ),

1t follows that

sup |gn(y)| < sup |gn(y) — Gn(y)| + sup |7 (y)l, (5.3)
yGDn yG n y€ n

where gn(z) = Y ;" Wy ;(z) with
1 X;—zx
Wy i(z) = o g (X;,e;), j=1,...,n.
n,](x) Tbb,ulc,:cf(x) < b )77( ]75])7 J ? ,
By using Borel-Cantelli lemma, one can show the first term on the right hand side
in (5.3) is O{y/logn/(nb)} with probability 1. Using Bernstein’s inequality and

some probability inequalities, we obtain sup,cp_ |Gn(y)] = Op{+/logn/(nb)}.
This implies the result. O

For the proof of Theorem 3.1, an asymptotic expression of ¢, will be de-
scribed. Let

D7 (u,2) = {f('rizn)K<u_’le_zn> N f(lT)K(uh_?T)},
Dn(u.2) = {f(fizn)K (Hfg—u) B f(lr>K (Th;u)}’

n

{D}F(X;,2) ~ D7 (X;,2)} B2
1

j=
where R; = Y; — m(X;) = v"/3(X;)ej, i =1,...,n and z, = z/n, z € [-M, M].
LEMMA 5.2. Suppose that assumptions (A.1)-(A.7) are satisfied. Then,

sup |on(z) — én(2)| = op(1).
z€[—M,M]|

PROOF. Let the denominators in (2.2) and (2.3) be fi(z) and f-(z), respec-

tively, as follows
~ 1 < X;—x
= — + .
fi(z) T J;K ( )

1 2 Xj — T AZ, _ 1 = X
nha fi(z) 2 ZK (i ha > % nhy f(z) ZK (j:

J=1

Note that

sup
T€EQ
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su ——1—n Xj—z AU — m(X))2
e nh2f._t(1)ZK(i h >[{ (X5) = m(X;)}

2R {(X;) — m(X;)}

sl (- 5 e (5

z€Q | nhe f+(x)

) R3|. (5.4)

Although the variance function v is not continuous at 7, since v is bounded,
it is easy to show that

sup [7(z) — m(z)] = Op ( logn | hl) (5.5)
z€Sy nhy

by using Theorem B in Mack and Silverman (1982). By Lemma 5.1 and (5.5),
the first term on the right-hand side of (5.4) is op(1) since R; has mean 0 and
bounded second moments. In the second term on the right-hand side of (5.4),
{1- fi(ac)/f(a:)} is op(1) due to (5.1). With the definition & = €5 — 1, j =
1,...,n, note that ’

e v JZ:}K(iX] )%
<o K () s
vl LK () v
_E{m;K (iX”h;a;) U(Xj)}
el (B ) ) o

The first two terms on the right-hand side of (5.6) are Op (1/log n/nh;) by Lemma
5.1. According to assumption (A.1), the variance function v is bounded, which
implies the last term in (5.6) is O(1). These imply that the second term on the
right-hand side of (5.4) is op(1). The result follows immediately. O
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We need the following four lemmas to prove Theorem 3.1.
LEMMA 5.3. Suppose that assumptions (A.1)-(A.7) are satisfied. Then,
E{¢n(2)} = —AK(0)|2| + o(1)
uniformly in z € [-M, M].

PROOF. We prove the lemma for z > 0, as the other case can be dealt with
similarly. By assumption (A.2),

E{D¥(X1,z)R%}

-5 [{ e () - e (5 1
by / (){v(r + 20 % hou) —v(r  hyu) bdu{1 + O(h2))

b L)
where the O(h2) term is uniform in z € [- M, M]. In the case of E{D}} (X1, z)R?},
by (A.1) and (A.2), it is easy to see that the terms in (5.7) are O(ha/n) uniformly
in 2.
As in the case of E{D+ X1,z RZ} the second term of E{D (X1, 2 R1} is
O(hy/n). The approximation of the first term in (5.7) is slightly different in the
case of £ { D, (X1, z)R%} because the change point 7 lies between 7+ z, — ho and
T + z,. In this case, we divide the interval of integration into two parts. Note
that, for z/(nhy) <u <1,

(T + 2zn — hou) — v(7 — hou) = O(hy) (5.8)

uniformly in z. However, for 0 < u < z/(nhs),

V(T + zp — hou) — v(T — hou)
= {v(1 + 2z — hou) — v4(7)} — {v(T — hou) —v_(T)} + A
=A+ O(hz) (5.9)

uniformly in z. By (5.8) and (5.9), the leading term of E{D; (X1,z)R?} equals

z/nhgy
th/ K(u)du
0

uniformly in z. Since K(u) = K(0){1 + o(1)} uniformly in u € [0, M/(nhs)], the
leading term of E{D; (X1,z)R}} is equal to AK(0)z,. This implies the result.
il
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LEMMA 5.4. Suppose that assumptions (A.1)-(A.7) and (A.10) are satisfied.
Then,

45( )
Cov{gn(z1), ¢n(22)} = { (1)

o(1), elsewhere,

min(|z1], [22)/{K (0)}* + o(1), 2122 > 0,

uniformly in zy,z0 € [-M, M].
Proor. We prove the lemma for z1, 2z > 0 first. By Lemma 5.3,
Cov{dn(21), dn(22)}
= nCov [{D;; (X1,21) — Do (X1, 21)}R2, {D (X1, 2) — Do (X1, zz)}Ri]
—nE [{D:{(Xl, 2)D (X1, 22) ~ DI (X1, 21) D (X1, 22)

— D;(Xl, Zl)D:{(Xl, z9) + D;(Xl, z1)D, (X1, ZQ)}R%] + O(%) (5.10)

The first equality holds since R? and R2 are independent when ¢ # j. Define
Zmin = min(z1, 22), Zmax = max (21, 22), Tmm = T+ Zmax/ M.
Consider the first term in the square brackets in (5.10) first. By assumptions
(A.2), (A.6), (A.7) and (A.10),

= 7+ Zmin/n and 7% =

E{D;‘{(Xl, 21)D (X1, Z2)R‘1*}

[ g o) [ e (e ()

7XFﬁx+h2
+ / Dy 2mim) D3 (1, 2ime) | 6(00) ()
i

max
n

= hz% [{K(O)}QZ“;;;‘ +0 (@%2-)—2)} {1+ O(ha)} (5.11)

uniformly in z; and z;. The O{1/(nh2)?} term in (5.11) follows from D (u, z)
being equal to O{1/(nhz)} uniformly in u and z due to (A.2) and (A.6). Next,
consider the second term in the square brackets in (5.10) for the case zpyin = 21.
The other cases can be dealt with in a similar way. We note that D} (u,z) =0
for u < 7 and D7 (u, z) = 0 for u > 7***. Then,

E{D+ (X1, 21) Dy (X1, 22) R%

z/:mm{— (u—-’l‘)}{ e <T,?a;_ u)}ﬁ(u)f(u)du
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max

o[ Dt ) { g (B ) e

— _h2f§ [{K }2'2““n +0 (( ;2)2)] {1+ 0(hy)} (5.12)

uniformly in z; and z2. Analogously,

E{D;, (X1,2)D;f (X1, 22) R}

( ) 2 #min 1
- —hzf( ) [{K( Y +O{(nh2)2}] {1+0(he)}  (5.13)

uniformly in z; and 22 and

E{D;(Xl,zl)D—(Xl,zQ)R‘*}
—hy fg ; [{K( )}ﬂmm o{(n;?)2 }] (1+0(h)}  (5.14)

uniformly in 2z; and 2. Combining the first leading terms in (5.11), (5.12), (5.13)
and (5.14) concludes the proof of Lemma 5.4 for the case z1,2z2 > 0.

Now, consider the case of z; > 0, 23 < 0. Following the proof for the case
z1, 22 > 0, we obtain

E{D;(Xl,zl)DI(Xl,m)Ri‘} = UTT;LW D7 (u, 2min) {ﬁK (%)}

max
+/ i D:(u,zmin)D;’(u,zmax)] k(u) f(u)du,

max

E{D:{(Xl,zl)D (X1, z0) RE } =0,

~ U—Tmm B
E{Dn (Xlazl)DrT(Xhz?)RAlL} - {f Tmm < ho >}Dn (u7 Zmax)

max

[ D;(u,zmm { e (B H s s

E{D;(XI,ZI)D;(XL@)R%} mm{L (T_ >}D;(U,Zmax)

.+.

e
/ (U me)D (u Zmax)] K(u)f(u)du
7-mm h2 ‘

(5.15)
uniformly in z; and z;. Here, the second identity follows from the fact that

D: (u, Zl)D; (’U,, 22) =0
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for all u. Since DE(u,z) = O{1/(nhs)} uniformly in « and z, all of the leading
terms in (5.15) are O{1/(nhy)?}. This implies the result immediately. O

LEMMA 5.5. Suppose that the assumptions in Theorem 3.1 are satisfied. For
each z € [-M, M|, ¢n(2) satisfies Lyapounov’s condition.

ProoOF. We will show the lemma for z > 0. The other case can be dealt
with similarly. By Lemma 5.4, Var(¢,(z)) = O(1). We will show that, for some
positive (,

Ln(z) = j E U{D:(Xj,z)—D,;(Xj,z)}R;’M} 0

J

as n — oo. By assumption (A.10), E(JR?|?*¢|X = z) < oo for all 2. Note that

L, (2)

IA

n- 22 E [{|DF (X0, )" + | D7 (X0, )P} R3]

1 \2+¢
= Odnhy [ = .
O{n : <nh2> }
By assumption (A.7), the result follows. O

LEMMA 5.6. Suppose that the assumptions in Theorem 3.1 are satisfied. Th-
en, the sequence of the process Yn(-) = ¢n(-) — E(¢n(:)) is tight.

PrROOF. By Theorem 12.3 in Billingsley (1968), it is enough to show that
there exist a positive constant €'} and a nondecreasing and continuous function
F such that

E(Yn(21) = ¥n(22))* < C1|F(22) — F(21)[? (5.16)

for sufficiently large n. By Lemma 5.4, there exists a positive constant C; such
that

E(¥n(21) — ¥n(22))? = Var(én(z1)) + Var(én(22)) — 2Cov(én(21), $n(22))
< Cilzg — 21|

for sufficiently large n and this concludes the proof of Lemma 5.6. O
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Proof of Theorem 3.1.

Lemma 5.5 implies that 9, (z), for fixed z € [-M, M], converges weakly to
a normal distribution. Furthermore, by the Cramer-Wold device, we may show
that for fixed z1,...,2,2; € [-M, M],

($n(21), -+, ¥nl(z)) = N(0,3),

where ¥ is the asymptotic covariance described in Lemma 5.4. This concludes
the proof. See Theorems 8.1 and 12.3 of Billingsley (1968). O

Proof of Corollary 3.1.
According to Theorem 5.1 in Billingsley (1968), we have

argmax ¢n(2) 2, argmax (z) (5.17)
2€[—M,M] z€[—M, M}

for any M > 0. If we prove

sup  A(z) = op(1)
z2€Q,|lx—T|>(M/n)

for any M > 0, the result in (5.17) can be extended to the entire real line
(—o0,00). Note that by (5.5), |R§ - R]2| = op(1) for all j. Therefore, it is enough
to show that

L K(:t X2
nthi(x) j=1 ha

This term is bounded by (5.6) with replacing sup,¢¢ and the last term in (5.6)
by SUPgzeQ,lz—7|>(M/n) and

respectively. This bias term is O(hy) due to the interval |x — 7| > (M/n) not

sup =op(1). (5.18)

z€Q,lz—7|2(M/n)

)R§ — v(z)

sup
2€Q,|le—7|>(M/n)

having the change point. This implies the result. g

Proof of Theorem 3.2.
Defining v(z;w) = - Y51 Vi(a; w)R3, where

) [mrr (5

Vitaiw) =W (25

)? j=17"',n7
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one obtains

sup [0(z;7) — v(z)| < sup |0(z;7) — 0(z; T )| + sup |[o(z;7) —v(z)]. (5.19)
:IIGSf ES GSf

Consider the first term on the right-hand side in (5.19). Note that

n

1hZV3(a: 7)

sup |9(z;7) — v(z; 7)| < sup

zESf T Sf
'I'L
+2 sup sup Vj(z; w)R;| sup |{m(x) — m(z)|. (5.20
wegxesf nhz ! mesfl ( )l ( )
By Lemma 5.1,
1 — logn
sup |— Vi(z;w)R;| = O . 5.21
nes; nh; _7( ) J P( nh ) ( )

Note that the result in Lemma 5.1 does not depend on the endpoints of the
interval [r, s]. Then, the result in (5.21) is uniform for w € Q, where Q is the left
or the right endpoint of the support of W*. The results in (5.5) and (5.21) imply
that

e logn logn logn
. — M = 2 _— e .
xseug [o(z; 7) v(z;7)| = Op (hl + by >+Op (n " + h1y/ ol K (5.22)

Now, we consider the second term on the right-hand side of (5.19). This proof
is similar to that for Theorem 4.1 in Miiller (1992). Defining A= (min(7,7), max(7.
7)) and B = Sy — A and observing that

sup [0(z;7) — v(z)|

zeB
1 < ~
< sug ZV z; T)v(X;5)E5| + sup Z{Vj(x;r) — Vi(z; 7)) }o(X;)§;
<
1 n
+sup |— Vi(z;7) = Vi(z; 1)} + sup |— Vi(z ) —v(z)|,
sup nh;{ J57) = Vo D)+ sup |53 Vi (@)
(5.23)

one notes that E(&;) = 0 for all j. By Lemma 5.1, one obtains

_ logn
=Op ( 0 ) , (5.24)

sSup sup
weQR .’EGSf

nh 4
]:
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which implies that the first two terms on the right-hand side of (5.23) are Op{

Viogn/(nh)}. Let

~ 1 X~z
Vi(z;w) = w* (=2 ;w), =1,...,n,
= v (P J
where
(w—1z)/h, |lw—z| <h, /W ydu, w —z >0,
c=4¢ —1, w—z < —h, =
1, w—1x > h, /W(u)du w—x<0.

Since the result in (5.1) does not depend on the support [r, s] of the kernel func-
tion, we have sup,eq Sup;cs, |Vj(z; w) — I’;}(:v, w)| = op(1) for all j. The function
Ugw Satisfies the Lipschitz condition of order 1 for w and z because the kernel
function W is symmetric and satisfies the Lipschitz condition. For fixed z, the
kernel function W* is constant for w. These facts imply that the function 171-(33; w)
satisfies the Lipschitz condition of order 1 for w as well as for . Then,

~ 1
= |7 - T1|0p <—nh—2)

by following the proof of Lemma 7.1 in Miiller (1992). Considering the third term

on the right-hand side of (5.23), one obtains
supZ 0061 < [-710n ,,2) > I, < ),
(5.25)

where H = {X;| 1< j <n,|X;-71| <hor|X; —7| < h} for which cardinality
is Op(nh) uniformly in 7 and 7. Since v is bounded according to (A.1) and
0 < A < o0, the right-hand side of (5.25) is |7 — 7|Op(1/h).

Next, the last term on the right-hand side of (5.23) is bounded by

—{Vj(@;7) = Vy(;7)}

)Vl 7)}

1 <& 1 <
sup | Do e - E{E;vm;r)v(xj)}[
+sup | ;lﬁjglvm;f)v(x])}—v(x) (5.26)

By Lemma 5.1, the first term in (5.26) is Op{\/logn/(nh)}. Consider the second
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term in (5.26) for z < 7. The other case is analogous. Observing that
1 n
{53 vmnu) | - v
j=1

¢ 1
= [ Wl )+ huda{1+ o(1)} ~ v(e)

= O(h)

uniformly in z, one finds the last term on the right-hand side in (5.23) to be

Op{+/logn/(nh) + h}. Therefore,

1
sup |9(z; 7) — v(z)| = Op ( %% 4 h) + |7 = 7]0p(R7Y). (5.27)
z€EB nh
On the interval A, one obtains
sup [v(z; T) — v(z)|
€A
1 n
< sup sup |— Vi(z; w)v(X;) —v + sup sup Vi(z; w)v
wEQ TS5 nh ; J( ol i) (@) weQ zeSy | T Z (

(5.28)

In the first term on the right-hand side of (5.28), the term sup,s, |- > =1 Vil
7)v(X;) — v(z)| is bounded by (5.26) with sup,¢p being replaced by sup,cs,. In
this case, the bias term

sup
.”IIESf

E[n—lh—ivm;r)vm)} ~ o(z)

is O(1) due to the existence of the change point. By Lemma 5.1, the second term
of (5.28) is Op{\/logn/(nh) + h}. Then the right-hand side of (5.28) is Op(1).
This implies

/ [3(2;7) — v(@)[Pde = 7 — 7|0p(1). (5.29)

A

Combining (5.22), (5.27) and (5.29), we get the result immediately. a
ACKNOWLEDGEMENTS

This work was supported by grant No. R05-2002-000-00216-0 from the Basic
Research Program of the Korea Science & Engineering Foundation.



DISCONTINUOUS VARIANCE FUNCTION ESTIMATION 23

REFERENCES

BHATTACHARYA, P. K. AND BROCKWELL, P. J. (1976). “The minimum of an additive process
with applications to signal estimation and storage theory”, Z. Wahrscheinlichkeitstheorie
und Verw. Gebiete, 37, 51-75.

BILLINGSLEY, P. (1968). Convergence of Probability Measures. John Wiley & Sons, New York.

CARROLL, R. J. (1982). “Adapting for heteroscedasticity in linear models”, The Annals of
Statistics, 10, 1224-1233.

CARROLL, R. J. AND RUPPERT, D. (1988). Transformation and Weighting in Regression.
Chapman and Hall, London.

GASSER, T., SROKA, L. AND JENNEN-STEINMETZ, C. (1986). “Residual variance and residual
pattern in nonlinear regression”, Biometrika, 73, 625-633.
HaLL, P. AND CARROLL, R. J. (1989). “Variance function estimation in regression: The effect
of estimating the mean”, Journal of the Royal Statistical Society, Ser. B, 51, 3-14.
HaLL, P., KAy, J. W. AND TITTERINGTON, D. M. (1990). “Asymptotically optimal difference-
based estimation of variance in nonparametric regression”, Biometrika, 77, 521-528.
HARDLE, W. (1990). Applied Nonparametric Regression. Cambridge University Press, Cam-
bridge.

HARDLE, W. (1991). Smoothing Techniques, With Implementation in S. Springer-Verlag, New
York.

LOADER, C. R. (1996). “Change point estimation using nonparametric regression”, The
Annals of Statistics, 24, 1667-1678.

Mack, Y. P. AND SILVERMAN, B. W. (1982). “Weak and strong uniform consistency of kernel
regression estimates”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 61, 405-415.

MULLER, H.-G. (1988). Nonparametric Regression Analysis of Longitudinal Data. Springer-
Verlag, Berlin.

MULLER, H.-G. (1992). “Change-points in nonparametric regression analysis”, The Annals of
Statistics, 20, 737-761.

MULLER, H.-G. AND STADTMULLER, U. (1987). “Estimation of heteroscedasticity in regression
analysis”, The Annals of Statistics, 15, 610-625.

RAIMONDO, M. (1998). “Minimax estimation of sharp change points”, The Annals of Statistics,
26, 1379-1397.

RICE, J. (1984). “Bandwidth choice for nonparametric regression”, The Annals of Statistics,
12, 1215-1230.

RuPPERT, D., WanD, M. P., Horst, U. aND HOSSIER, O. (1997). “Local polynomial
variance-function estimation”, Technomtrics, 39, 262-273.

STuTE, W. (1982). “A law of the logarithm for kernel density estimators”, The Annals of
Probability, 10, 414-422.

WHITT, W. (1970). “Weak convergence of probability measures on the function space C[0, 00)”,
Annals of Mathematical Statistics, 41, 939-944.



