• Title/Summary/Keyword: Cerebral ischemia-reperfusion

Search Result 125, Processing Time 0.034 seconds

Epoxyeicosatrienoic Acid Inhibits the Apoptosis of Cerebral Microvascular Smooth Muscle Cells by Oxygen Glucose Deprivation via Targeting the JNK/c-Jun and mTOR Signaling Pathways

  • Qu, Youyang;Liu, Yu;Zhu, Yanmei;Chen, Li;Sun, Wei;Zhu, Yulan
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.837-846
    • /
    • 2017
  • As a component of the neurovascular unit, cerebral smooth muscle cells (CSMCs) are an important mediator in the development of cerebral vascular diseases such as stroke. Epoxyeicosatrienoic acids (EETs) are the products of arachidonic acid catalyzed by cytochrome P450 epoxygenase. EETs are shown to exert neuroprotective effects. In this article, the role of EET in the growth and apoptosis of CSMCs and the underlying mechanisms under oxygen glucose deprivation (OGD) conditions were addressed. The viability of CMSCs was decreased significantly in the OGD group, while different subtypes of EETs, especially 14,15-EET, could increase the viability of CSMCs under OGD conditions. RAPA (serine/threonine kinase Mammalian Target of Rapamycin), a specific mTOR inhibitor, could elevate the level of oxygen free radicals in CSMCs as well as the anti-apoptotic effects of 14,15-EET under OGD conditions. However, SP600125, a specific JNK (c-Jun N-terminal protein kinase) pathway inhibitor, could attenuate oxygen free radicals levels in CSMCs as well as the anti-apoptotic effects of 14,15-EET under OGD conditions. These results strongly suggest that EETs exert protective functions during the growth and apoptosis of CSMCs, via the JNK/c-Jun and mTOR signaling pathways in vitro. We are the first to disclose the beneficial roles and underlying mechanism of 14,15-EET in CSMC under OGD conditions.

Stachys sieboldii M iq. Protects SH-SY5Y Cells Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury by Inhibition of Mitochondrion-Mediated Apoptosis Pathway (허혈-재관류 유도 SH-SY5Y 모델에서 미토콘드리아 매개 Apoptosis 기전 제어를 통한 초석잠 추출물의 세포보호 효과)

  • Jin-Woo Jeong;Eun Jung Ahn;Chul Hwan Kim;Su Young Shin;Seung Young Lee;Kyung-Min Choi;Chang-Min Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.57-57
    • /
    • 2021
  • Oxygen glucose deprivation/re-oxygenation (OGD/R) induces neuronal injury via mechanisms that are believed to mimic the pathways associated with brain ischemia. Stachys sieboldii Miq. (Chinese artichoke), which has been extensively used in oriental traditional medicine to treat of ischemic stroke; however, the role of S. sieboldii Miq. (SSM) in OGD/R induced neuronal injury is not yet fully understood. The present research is aimed to investigate the protective effect and possible mechanisms of SSM extract treatment in an in vitro model of OGD/R to simulate ischemia/reperfusion Injury. Pretreatment of these cells with SSM significantly attenuated OGD/R-induced production of reactive oxygen species (ROS) by increasing GPx, SOD, and decreasing MDA. SSM decreased mitochondrial damage caused by OGD/R injury and inhibited the release of cyt-c from mitochondrion to cytoplasm in SH-SY5Y cells. Furthermore, neuronal cell apoptosis caused by OGD/R injury was inhibited by SSM, and SSM could decrease apoptosis by increasing ratio of Bcl-2/Bax and inhibiting caspase signaling pathway in SH-SY5Y cells. SSM demonstrated a neuroprotective effect on the simulated cerebral ischemia in vitro model, and this effect was the inhibition of mitochondria-mediated apoptosis pathway by scavenging of ROS generation. Therefore, SSM may be a promising neuroprotective strategy against ischemic stroke.

  • PDF

Initial Experience of ACE68 Reperfusion Catheter in Patients with Acute Ischemic Stroke Related to Internal Carotid Artery Occlusion

  • Jang, Hyoung-Gyu;Park, Jung-Soo;Lee, Jong-Myong;Kwak, Hyo-Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.5
    • /
    • pp.545-550
    • /
    • 2019
  • Objective : Penumbra ACE68 reperfusion catheter is a new large bore aspiration catheter used for reperfusion of large vessel occlusion. The objective of this study was to investigate the efficacy of this catheter in comparison to that of previous Penumbra catheters in patients with acute ischemic stroke related to internal carotid artery (ICA) occlusion. Methods : Data of all eligible patients who received endovascular treatment (EVT) for ICA occlusion using Penumbra aspiration catheters between January 2015 and December 2018 were retrospectively reviewed. After dividing into two groups according to use of penumbra ACE68, baseline characteristics of patients, successful recanalization rate, puncture to recanalization time, and switch to stent base technique rate were assessed. Successful recanalization was defined by a thrombolysis in cerebral infarction (TICI) score ${\geq}2b$ and favorable functional outcome was defined according to modified Rankin scale (score, 0-2). Results : ACE68 reperfusion catheter was used in 29 of 75 eligible patients (39%). The puncture to recanalization time was significantly shorter ($26{\pm}18.2$ minutes vs. $40{\pm}24.9$ minutes, p=0.011) and the rate of switch to stent-based retrieval was significantly lower (3% vs. 20%, p=0.046) in ACE68 catheter group. Moreover, although not statistically significant, the successful recanalization rate was higher (83% vs. 76%, p=0.492) in ACE68 catheter group. Favorable functional outcome was observed in 48% of patients treated with ACE68 reperfusion catheter and in 30% of patients treated using other Penumbra systems (p=0.120). Baseline Alberta Stroke Program Early CT Scores ${\geq}8$ (odds ratio [OR], 9.74; 95% confidence interval [CI], 1.72-54.99; p=0.010) and successful recanalization (OR, 10.20; 95% CI, 1.13-92.46; p=0.039) were independent predictors of favorable outcome. Conclusion : EVT using ACE68 reperfusion catheter can be considered a first-line therapy in patients with acute ICA occlusion as it can achieve rapid recanalization and reduce the frequency of conversion to stent-retrieve therapy.

Real-Time Glutamate Release in Rat Striatum of 11-Vessel-Occlusion Ischemia Model Treated with Acupuncture (11개 혈관 차단법을 통한 중증 뇌경색 모델에서 뇌손상 측정과 침치료 효과 실시간 분석)

  • Yin, Chang-Shik;Choi, Seok-Keun;Lee, Gi-Ja;Eo, Yun-Hye;Kim, Bum-Shik;Oh, Berm-Seok;Lim, Ji-Eun;Lee, Hye-Jung;Park, Hun-Kuk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.835-840
    • /
    • 2008
  • Acupuncture has long been contended to be effective in an ischemic stroke. A real-time monitoring of glutamate, an excitotoxin in the process of ischemic neuronal damage, in the striatum is tried in a rat model of global ischemia. Global ischemia was induced by the 11 vessel occlusion method for 10 minutes, during which acupuncture stimulation on GB34 and GB39 points was executed. Glutamate release in the rat striatum was monitored 256 times per second using real-time amperometric biosensor. Real time measurement data of 10 minutes prior to the induction of ischemia served as baseline data. Data acquisition continued for 30 minutes after the initiation of reperfusion. Peak concentration of glutamate release along with incidentally measured EEG and cerebral blood flow was compared between cases with and without acupuncture stimulation. Peak concentration of glutamate lowered when acupuncture stimulation was executed. A real time monitoring system of 11 vessel-occlusion induced global ischemia model was successfully established. The effect by acupuncture on acute global ischemia was successfully observed in this real-time monitoring setting, which may be one of the neuroprotective mechanism of acupuncture.

Effects of Medicinal Plant Extract on the Change of Cerebral Hemodynamic in Rats (약용식물 추출물이 흰쥐의 뇌혈류학적 변화에 미치는 영향)

  • Park, Sung-Jin;Hahm, Tae-Shik;Kim, Cheun-An
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.4
    • /
    • pp.506-510
    • /
    • 2010
  • As an attempt to develop new functional health beverage by using medicinal herb, we investigated the effect of medicinal plant extract (MPE) on mean arterial blood pressure (MABP) and regional cerebral blood flow (rCBF) of rats. The changes of MABP and rCBF were determined by LDF methods. LDF allows for real time, noninvasive, continuous recordings of local CBF. MABP in MPE treated rats showed significant change of MPE 1.0 and 10.0 mg/kg. MPE i.v. administration showed significant increase of rCBF in a dose-dependent manner. Propranolol pretreated MABP showed significant change in the increase of MPE. rCBF of propranolol pretreated rats showed significant change from the i.v. injection concentration of 1.0 and 10.0 mg/kg. The ischemia/reperfusion induced oxidative stress may have contributed to cerebral damage in rats, and the present study provides clear evidence for the beneficial effect of MPE on ischemia induced brain injury. Also, the action mechanism in elevation effect of MPE on rCBF might be concerned with the role of $\beta$-adrenoceptor. The exact component and mechanism remains for the future study.

Neuroprotective effects of Korean White ginseng and Red ginseng in an ischemic stroke mouse model

  • Jin, Myungho;Kim, Kyung-Min;Lim, Chiyeon;Cho, Suin;Kim, Young Kyun
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.275-282
    • /
    • 2022
  • Background: Stroke is a neurological disorder characterized by brain tissue damage following a decrease in oxygen supply to brain due to blocked blood vessels. Reportedly, 80% of all stroke cases are classified as cerebral infarction, and the incidence rate of this condition increases with age. Herein, we compared the efficacies of Korean White ginseng (WG) and Korean Red Ginseng (RG) extracts (WGex and RGex, respectively) in an ischemic stroke mouse model and confirmed the underlying mechanisms of action. Methods: Mice were orally administered WGex or RGex 1 h before middle cerebral artery occlusion (MCAO), for 2 h; the size of the infarct area was measured 24 h after MCAO induction. Then, the neurological deficit score was evaluated and the efficacies of the two extracts were compared. Finally, their mechanisms of action were confirmed with tissue staining and protein quantification. Results: In the MCAO-induced ischemic stroke mouse model, WGex and RGex showed neuroprotective effects in the cortical region, with RGex demonstrating superior efficacy than WGex. Ginsenoside Rg1, a representative indicator substance, was not involved in mediating the effects of WGex and RGex. Conclusion: WGex and RGex could alleviate the brain injury caused by ischemia/reperfusion, with RGex showing a more potent effect. At 1,000 mg/kg body weight, only RGex reduced cerebral infarction and edema, and both anti-inflammatory and anti-apoptotic pathways were involved in mediating these effects.

Cardiovascular Responses and Nitric Oxide Production in Cerebral Ischemic Rats

  • Shinl, Chang-Yell;Lee, Nam-In;Je, Hyun-Dong;Kim, Jeong-Soo;Sung, Ji-Hyun;Kim, Dong-Seok;Lee, Doo-Won;Bae, Ki-Lyong;Sohn, Uy-Dong
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.697-703
    • /
    • 2002
  • We investigated that the role of nitric oxide (NO) on ischemic rats in brain and heart. Ischemia was induced by both common carotid arteries (CCA) occlusion for 24h following reperfusion. Then tissue samples were removed and measured NOx. In brain, NOx was increased by about 40% vs. normal and it was significantly inhibited by aminoguanidine, selective iNOS inhibitor. This result showed that NOx concentration was increased by iNOS. We investigated the role of $Ca^{2+}$ during ischemia. Nimodipine, L-type calcium channel blocker, didn't inhibit the increases of NOx concentration during ischemia. It suggested that increased NOx was due to calcium-independent NOS. MK-801, which N-methyl-D-aspartate (NMDA) receptor antagonist, didn't significantly prevent the increases of NOx. In heart, ischemia caused NOx decrease and it is inconsistent with NOx increase in brain. Aminoguanidine and nimodipine didnt affect on NOx decrease. But MK-801 more lowered NOx concentration than those of ischemia control group. It seemed that $Ca^{2+}$ influx in heart partially occurred via NMDA receptor and inhibited by NMDA receptor antagonist. The mean arterial pressure (MAP) in ischemic rats after 24h of CCA occlusion was decreased when compared to normal value, whereas the heart rates (HR) was not different between two groups. Aminoguanidine or MK801 had no effect on MAP or HR, but nimodipine reduced MAP. There was no difference the effects of aminoguanidine, nimodipine, or MK-801, on MAP and HR between normal rats and ischemic rats. In summary, ischemic model caused an increase of NOx concentration, suggesting that this may be produced via iNOS, which is calcium independent in brain. However in heart, ischemia decreased NOx concentration and NMDA receptor was partially involved. The basal MAP was decreased in ischemic rats but HR was not different from normal control, suggesting that increased NOx in brain of ischemic rat may result in the hypotension.

Experimental Study of Patholobi Caulis on the Transient Cerebral Ischemia in Rats (계혈등(鷄血藤) 추출물이 뇌허혈에 미치는 실험적 연구)

  • Lee, Sang-Lok;Choi, Chan-Hun;Baek, Jin-Ung;Youn, Dae-Hwan;Jeong, Sang-Hun;Han, Ung;Jeong, Hyun-Woo;Kim, Gye-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1127-1134
    • /
    • 2007
  • The study was designed to investigate the mechanism of Patholoobi Caulis freeze dried powder (PCF) on the regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP) in normal rats and cytokines production ($IL-1{\beta}$, $TNF-{\alpha}$, IL-10, $TGF-{\beta}$) in cerebral ischemic rats. The results in normal rats were as follows ; Increase of PCF-induced rCBF was significantly inhibited by pretreatment with methylene blue (10 ${\mu}g/kg$, I.p.), an inhibitor of guanylate cyclase, and was inhibited by indomethacin (1 mg/kg, i.p.), an inhibitor of cyclooxygenase. Increase of PCF-induced MABP was decreased by pretreatment with methylene blue, but was increased by indomethacin. These results suggested that the mechanism of action PCF was mediated by cyclic 3',5'-guanosine monophosphate. The results in cerebral ischemic rats were as follows ; In cytokine production in serum from femoral arterial blood 1 hr after middle cerebral arterial occlusion, PCF (10 mg/kg. i.p.) significantly decreased $IL-1{\beta}$ and $TNF-{\alpha}$ production, and increased IL-10 production compared with control group. In cytokine production in serum from femoral arterial blood 1 hr 1 hr after reperfusion, PCF (10 mg/kg, i.p.) significantly decreased $IL-1{\beta}$ production, and incresed IL-10 production compared with control group. These results suggested that PCF was significantly and stably increased regional cerebral blood flow by inhibiting $IL-1{\beta}$ production, and by accelerating IL-10 production.

Inhibition of Oxidative Stress-induced and Excitotoxic Neuronal Cell Damage by Xuesaitong Ruanjiaonang (혈색통연교낭(血塞通軟膠囊)의 산화적 및 흥분성 신경세포독성 억제작용)

  • Cho Jungsook
    • YAKHAK HOEJI
    • /
    • v.49 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • Xuesaitong Ruanjiaonang (XR), a soft capsule containing Panax notoginseng saponins as main ingredients, is believed to remove extravasated blood and increase cerebral blood flow by improving blood circulation, and therefore, has been used in China to treat ischemic stroke or hemiplegia caused by cerebral thrombosis. To characterize pharmacological actions of XR, the present study evaluated its effects on neuronal cell damage induced by various oxidative insults or excitotoxic amino acids in primary cultured rat cortical cells. The neuronal cell viability was not affected by XR with the exposure for 2 h at the concentrations tested in this study ($10{\sim}1000\;{\mu}g/ml$). However, significant reduction of the cell viability was observed when the cultured cells were exposed to XR at $1000\;{\mu}g/ml$ for 24 h. XR was found to concentration-dependently inhibit the oxidative neuronal damage induced by $H_{2}O_2$, xanthine/xanthine oxidase or $Fe^{2+}$/ascorbic acid. In addition, it dramatically inhibited the excitotoxic damage induced by glutamate or N-methyl-D-aspartate (NMDA). We found that the NMDA-induced neurotoxicity was inhibited more effectively and potently than the glutamate-induced toxicity. Moreover, XR was found to exert mild inhibition of lipid peroxidation induced by $Fe^{2+}$/ascorbic acid in rat brain homogenates and some 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Taken together, these results demonstrate neuroprotective and antioxidant effects of XR, showing inhibition of oxidative and excitotoxic damage in the cultured cortical neurons, as well as inhibition of lipid peroxidation and its radical scavenging activity. Considering that excitotoxicity and oxidative stress pl ay crucial roles in neuronal cell damage during ischemia and reperfusion, these results may provide pharmacological basis for its clinical usage to treat ischemic stroke.

Development of Cell Therapeutics against Ischemic Vascular Diseases Using Mesenchymal Stem Cells: From Bench to Bed (중간엽줄기세포(MSC)를 이용한 허혈성 혈관질환 치료를 위한 세포치료제 개발: 기초연구에서 임상연구)

  • Lee, Eun Ji;Park, Shin Hu;Seo, Jeong Ho;An, Hyo Gyung;Nam, Si Hyun;Kwon, Sang-Mo
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.567-577
    • /
    • 2022
  • Recently, the prevalence of ischemic diseases, such as ischemic heart disease, cerebral ischemia, and peripheral arterial disease, has been continuously increasing due to the aging population. The current standardized treatment for ischemic diseases is reperfusion therapy through pharmacotherapy and surgical approaches. Although reperfusion therapy may restore the function of damaged arteries, it is not effective at restoring the function of the surrounding tissues that have been damaged due to ischemia. Therefore, it is necessary to develop a new treatment strategy that can safely and effectively treat ischemic damage and restore the function of surrounding tissues. To overcome these limitations, stem cell-based therapy to regenerate the damaged region has been studied as a promising strategy for ischemic vascular diseases. Mesenchymal stem cells (MSCs) can be isolated from diverse tissues and have been shown to be promising for the treatment of ischemic disease by regenerating damaged tissues through immunomodulation, the promotion of angiogenesis, and the secretion of various relevant factors. Moreover, new approaches to enhancing MSC function, such as cell priming or enhancing transplantation efficiency using a 3D culture method, have been studied to increase stem cell therapeutic efficacy. In this review, we provide various strategies by which MSCs are used to treat ischemic diseases, and we discuss the challenges of MSC transplantation, such as the differentiation, proliferation, and engraftment of MSCs at the ischemic site.