Browse > Article

Cardiovascular Responses and Nitric Oxide Production in Cerebral Ischemic Rats  

Shinl, Chang-Yell (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Lee, Nam-In (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Je, Hyun-Dong (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Kim, Jeong-Soo (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Sung, Ji-Hyun (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Kim, Dong-Seok (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Lee, Doo-Won (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Bae, Ki-Lyong (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Sohn, Uy-Dong (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Publication Information
Archives of Pharmacal Research / v.25, no.5, 2002 , pp. 697-703 More about this Journal
Abstract
We investigated that the role of nitric oxide (NO) on ischemic rats in brain and heart. Ischemia was induced by both common carotid arteries (CCA) occlusion for 24h following reperfusion. Then tissue samples were removed and measured NOx. In brain, NOx was increased by about 40% vs. normal and it was significantly inhibited by aminoguanidine, selective iNOS inhibitor. This result showed that NOx concentration was increased by iNOS. We investigated the role of $Ca^{2+}$ during ischemia. Nimodipine, L-type calcium channel blocker, didn't inhibit the increases of NOx concentration during ischemia. It suggested that increased NOx was due to calcium-independent NOS. MK-801, which N-methyl-D-aspartate (NMDA) receptor antagonist, didn't significantly prevent the increases of NOx. In heart, ischemia caused NOx decrease and it is inconsistent with NOx increase in brain. Aminoguanidine and nimodipine didnt affect on NOx decrease. But MK-801 more lowered NOx concentration than those of ischemia control group. It seemed that $Ca^{2+}$ influx in heart partially occurred via NMDA receptor and inhibited by NMDA receptor antagonist. The mean arterial pressure (MAP) in ischemic rats after 24h of CCA occlusion was decreased when compared to normal value, whereas the heart rates (HR) was not different between two groups. Aminoguanidine or MK801 had no effect on MAP or HR, but nimodipine reduced MAP. There was no difference the effects of aminoguanidine, nimodipine, or MK-801, on MAP and HR between normal rats and ischemic rats. In summary, ischemic model caused an increase of NOx concentration, suggesting that this may be produced via iNOS, which is calcium independent in brain. However in heart, ischemia decreased NOx concentration and NMDA receptor was partially involved. The basal MAP was decreased in ischemic rats but HR was not different from normal control, suggesting that increased NOx in brain of ischemic rat may result in the hypotension.
Keywords
Nitric oxide; NO; N-methy-D-aspartate; NMDA; NO; Nitric oxide; NMDA; N-methyl-D-aspartate; NOS; Nitric oxide synthase;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Brunner, F., Interaction of nitric oxide and endothelin-1 in ischemia/reperfusion injury of rat heart. J. Mol. Cell. Cardiol., 29, 2363-2374 (1997)   DOI   PUBMED   ScienceOn
2 Buchan, A. M., Slivka, A. and Xue, D., The effect of the NMDA receptor antagonist MK-801 on cerebral blood flow and infarct volume in experimental focal stroke. Brain Res., 574, 171-177 (1992)   DOI   PUBMED   ScienceOn
3 East, S. J. and Garthwaite, J., NMDA receptor activation in rat hippocampus induces cyclic GMP formation through the L-arginine-nitric oxide pathway. Neurosci. Lett., 123, 17-19 (1991)   DOI   ScienceOn
4 Grandati, M., Verrecchia, C., Revaud, M. L., Allix, M., Boulu, R. G. and Plotkine, M., Calcium-independent NO-synthase activity and nitrites/nitrates production in transient focal cerebral ischaemia in mice. Br. J. Pharmacol., 122, 625-630 (1997)   DOI   ScienceOn
5 Kader, A., Frazzini, V. I., Solomon, R. A. and Trifiletti, R. R., Nitric oxide production during focal cerebral ischemia in rats. Stroke, 24,1709-1716 (1993)   DOI   PUBMED   ScienceOn
6 Rami A. and Krieglstein, J., Neuronal protective effects of calcium antagonists in cerebral ischemia. Life Sci., 55, 2105-23 (1994)   DOI   ScienceOn
7 Siesjo, B. K. and Bengtsson, F., Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J. Cereb. Blood Flow Metab., 9, 127-140 (1989)   DOI   PUBMED
8 Takeda, Y., Tashima, M., Takahashi, A., Uchiyama, T. and Okazaki, T., Ceramide generation in nitric oxide-induced apoptosis. Activation of magnesium-dependent neutral sphingomyelinase via caspase-3. J. Biol. Chem., 274, 10654-10660 (1999)   DOI   ScienceOn
9 Tsien, R. W., Ellinor, P. T. and Horne, W. A., Molecular diversity of voltage-dependent $Ca^{2+}$ channels. Trends Pharmacol. Sci., 12, 349-354 (1991)   DOI   ScienceOn
10 ladecola, C., Pelligrino, D. A, Moskowitz, M. A and Lassen, N. A, Nitric oxide synthase inhibition and cerebrovascular regulation. J. Cereb. Blood Flow Metab., 14(2), 175-192 (1994)   DOI   PUBMED   ScienceOn
11 Ohtari, K., Tanaka, H., Yasuda H., Maruoka, Y., Kawabe, A. and Nakamura, M., Blocking the glycine-binding site of NDA receptors prevents the progression of ischemic pathology induced by bilateral carotid artery occlusion in spontaneously hypertensive rats. Brain Res., 871, 311-318 (2000)   DOI   ScienceOn
12 Callewaert, G., Cleemann, L. and Morad, M., Epinephrine enhances $Ca^{2+}$ current-regulated $Ca^{2+}$ release and $Ca^{2+}$ reuptake in rat ventricular myocytes. Proc. Natl. Acad. Sci. U.S.A, 85, 2009-2013 (1988)   DOI   ScienceOn
13 Kobavashi, M., Kuroiwa, T., Shimokawa, R., Okeda, R. and Tocoro, T., Nitric oxide synthase expression in ischemic rat retinas. Jpn. J. Ophthalmol. 44(3), 235-244 (2000)   DOI   ScienceOn
14 Maulik N., Engelman, D. T., Watanabe, M., Engelman, R. M., Maulik, G., Cordis, G. A. and Das, D. K., Nitric oxide signaling in ischemic heart. Cardiovasc. Res., 30, 593-601 (1995)   DOI   PUBMED
15 del Pilar Fernandez, M., Meizoso, M. J., Lodeiro, M. J. and Belmonte, A., Effect of desmethyl tirilazad, dizocilpine maleate and nimodipine on brain nitric oxide synthase activity and cyclic guanosine monophosphate during cerebral ischemia in rats. Pharmacology, 57, 174-179 (1998)   DOI   ScienceOn
16 Morris. S. M., Jr. and Billiar, T. R., New insights into the regulation of inducible nitric oxide synthesis. Am. J. Physiol., 266, E829-839 (1994)   PUBMED
17 Murphy, K. M. and Snyder, S. H., Calcium antagonist receptor binding sites labeled with [3H]nitrendipine. Eur. J. Pharmacol, 77, 201-202 (1982)   DOI   PUBMED   ScienceOn
18 Pabla, R., Buda, A. J., Flynn, D. M., Salzberg, D. B. and Lefer, D. J., Intracoronary nitric oxide improves postischemic coronary blood flow and myocardial contractile function. Am. J. Physiol., 269, H1113-1121 (1995)   PUBMED
19 ladecola, C., Zhang, F.,Casey, R., Clark, H. B. and Ross, M. E., Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke, 27, 1373-1380 (1996)   DOI   PUBMED   ScienceOn
20 Mayer, M. L. and Miller, R. J., Excitatory amino acid receptors, second messengers and regulation of intracellular $Ca^{2+}$ in mammalian neurons. Trends Pharmacol. Sci., 11, 254-260 (1990)   DOI   ScienceOn
21 Thiemermann, C., Wu, C. C., Szabo, C., Perretti, M. and Vane, J. R., Role of tumour necrosis factor in the induction of nitric oxide synthase in a rat model of endotoxin shock. Br. J. Pharmacol., 110, 177-182 (1993)   DOI   PUBMED   ScienceOn
22 Yoshida, T., Waeber, C., Huang, Z. and Moskowitz, M. A., Induction of nitric oxide synthase activity in rodent brain following middle cerebral artery occlusion. Neurosci. Lett., 194, 214-218 (1995)   DOI   ScienceOn
23 Cho, H. J., Xie, Q. w., Calaycay, J., Mumford, R. A, Swiderek, K. M., Lee, T. D. and Nathan, C., Calmodulin is a subunit of nitric oxide synthase from macrophages. J. Exp. Med., 176, 599-604 (1992)   DOI   ScienceOn
24 Cai, Z., Lin, S. and Rhodes, P. G., Neuroprotective effects of N-acetylaspartylglutamate in a neonatal rat model of hypoxia-ischemia. Eur. J. Pharmacol., 437(4), 139-145 (2002)   DOI   ScienceOn
25 Garcia, .J. H., Liu, K. F., Yoshida, Y., Lian, J., Chen, S. and del Zoppo, G. J., Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am. J. Pathol., 144, 188-199 (1994)   PUBMED
26 Salom, J. B., Orti, M., Centeno, J. M., Torregrosa, G. and Alborch, E., Reduction of infarct size by the NO donors sodium nitroprusside and spermine/NO after transient focal cerebral ischemia in rats. Brain res., 865, 149-156 (2000)   DOI   ScienceOn
27 Holtz, M. L., Craddock, S. D. and Pettigrew, L. C., Rapid expression of neuronal and inducible nitric oxide synthases during post-ischemic reperfusion in rat brain. Brain Res., 898, 49-60 (2001)   DOI   ScienceOn
28 ladecola, C., Xu, X., Zhang, F.,el-Fakahany, E. E. and Ross, M. E., Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia. J. Cereb. Blood Flow Metab., 15, 52-59 (1995)   DOI   PUBMED   ScienceOn
29 Muloer, M. F.,van Lambalgen, A. A., Huisman, E., Visser, J. J., var den Bos, G. C. and Thijs, L. G., Protective role of NO in the regional hemodynamic changes during acute endotcxemia in rats. Am. J. Physiol., 266, H1558-1564 (1994)   PUBMED
30 Tracey, W. R., Tse, J. and Carter, G., Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. J. Pharmacol. Exp. Ther., 272, 1011-1015 (1995)   PUBMED
31 Green, E. J., Pazos, A J., Dietrich, W. D., McCabe, P. M., Schneiderman, N., Lin, B., Busto, R., Globus, M. Y. and Ginsberg, M. D., Combined postischemic hypothermia and delayed MK-801 treatment attenuates neurobehavioral deficits associated with transient global ischemia in rats. Brain Res., 702, 145-152 (1995)   DOI   PUBMED   ScienceOn
32 Shichijo, S., Payan, D. G., Harrowe, G. and Mitsuhashi, M., Histamine effects on the 5-HT1c receptor expressed in Xenopus oocytes. J. Neurosci. Res., 30, 316-320 (1991)   DOI   ScienceOn
33 ladecola, C., Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci., 20, 132-139 (1997)   DOI   PUBMED   ScienceOn
34 Wang, P., Ba, Z. F. and Chaudry, I. H., Nitric oxide. To block or enhance its production during sepsis? Arch. Surg., 129, 1137-1142; discussion 1142-1133 (1994)   DOI   PUBMED   ScienceOn
35 Lo W. C., Lin, H.C., Ger, L. P., Tung, C. S. and Tseng, C. J., Cardiovascular effects of nitric oxide and N-methyl-D-aspartate receptors in the nucleus tractus solitarii of rats . Hypertension, 30(6), 1499-1503 (1997)   DOI   PUBMED   ScienceOn
36 Seeber, S., Becker, K., Rau, T., Eschenhagen, T., Becker, C. M. and Herkert, M., Transient expression of NMDA receptor subunit NR2B in the developing rat heart. J. Neurochem., 75, 2472-2477 (2000)   DOI   ScienceOn
37 Faraci, F. M., Endothelium-derived vasoactive factors and regulation of the cerebral circulation. Neurosurgery., 33(4), 648-658 (1993)   DOI   PUBMED   ScienceOn