DOI QR코드

DOI QR Code

Neuroprotective effects of Korean White ginseng and Red ginseng in an ischemic stroke mouse model

  • Jin, Myungho (College of Korean Medicine, Dong-Eui University) ;
  • Kim, Kyung-Min (College of Korean Medicine, Dong-Eui University) ;
  • Lim, Chiyeon (Department of Medicine, College of Medicine, Dongguk University) ;
  • Cho, Suin (Department of Korean Medicine, School of Korean Medicine, Pusan National University) ;
  • Kim, Young Kyun (College of Korean Medicine, Dong-Eui University)
  • Received : 2021.03.17
  • Accepted : 2021.06.24
  • Published : 2022.03.01

Abstract

Background: Stroke is a neurological disorder characterized by brain tissue damage following a decrease in oxygen supply to brain due to blocked blood vessels. Reportedly, 80% of all stroke cases are classified as cerebral infarction, and the incidence rate of this condition increases with age. Herein, we compared the efficacies of Korean White ginseng (WG) and Korean Red Ginseng (RG) extracts (WGex and RGex, respectively) in an ischemic stroke mouse model and confirmed the underlying mechanisms of action. Methods: Mice were orally administered WGex or RGex 1 h before middle cerebral artery occlusion (MCAO), for 2 h; the size of the infarct area was measured 24 h after MCAO induction. Then, the neurological deficit score was evaluated and the efficacies of the two extracts were compared. Finally, their mechanisms of action were confirmed with tissue staining and protein quantification. Results: In the MCAO-induced ischemic stroke mouse model, WGex and RGex showed neuroprotective effects in the cortical region, with RGex demonstrating superior efficacy than WGex. Ginsenoside Rg1, a representative indicator substance, was not involved in mediating the effects of WGex and RGex. Conclusion: WGex and RGex could alleviate the brain injury caused by ischemia/reperfusion, with RGex showing a more potent effect. At 1,000 mg/kg body weight, only RGex reduced cerebral infarction and edema, and both anti-inflammatory and anti-apoptotic pathways were involved in mediating these effects.

Keywords

References

  1. Jiao L, Li B, Wang M, Liu Z, Zhang X, Liu S. Antioxidant activities of the oligosaccharides from the roots, flowers and leaves of Panax ginseng C. A. Meyer. Carbohydr Polym 2014;106:293-8. https://doi.org/10.1016/j.carbpol.2014.02.035
  2. Song M, Kim B, Kim H. Influence of Panax ginseng on obesity and gut microbiota in obese middle-aged Korean women. J Ginseng Res 2014;38:106-15. https://doi.org/10.1016/j.jgr.2013.12.004
  3. Choi JH, Jin SW, Park BH, Kim HG, Khanal T, Han HJ, Hwang YP, Choi JM, Chung YC, Hwang SK, et al. Cultivated ginseng inhibits 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in NC/nga mice and TNF-alpha/IFN-gamma-induced TARC activation in HaCaT cells. Food Chem Toxicol 2013;56:195-203. https://doi.org/10.1016/j.fct.2013.02.037
  4. Gui Y, Ryu G. Effects of extrusion cooking on physicochemical properties of white and red ginseng (powder). J Ginseng Res 2014;38:146-53. https://doi.org/10.1016/j.jgr.2013.12.002
  5. Zhang H, Li S, Zhang H, Wang Y, Zhao ZL, Chen SL, Xu HX. Holistic quality evaluation of commercial white and red ginseng using a UPLC-QTOF-MS/MS-based metabolomics approach. J Pharm Biomed Anal 2012;62:258-73. https://doi.org/10.1016/j.jpba.2012.01.010
  6. Jung MY, Jeon BS, Bock JY. Free, esterified, and insoluble-bound phenolic acids in white and red Korean ginsengs (Panax ginseng C.A. Meyer). Food Chem 2002;79:105-11. https://doi.org/10.1016/S0308-8146(02)00185-1
  7. Mittal SH, Goel D. Mortality in ischemic stroke score: a predictive score of mortality for acute ischemic stroke. Brain Circ 2017;3:29-34. https://doi.org/10.4103/2394-8108.203256
  8. Shah B, Bartaula B, Adhikari J, Neupane HS, Shah BP, Poudel G. Predictors of inhospital mortality of acute ischemic stroke in adult population. J Neurosci Rural Pract 2017;8:591-4. https://doi.org/10.4103/jnrp.jnrp_265_17
  9. Ramirez L, Kim-Tenser MA, Sanossian N, Cen S, Wen G, He S, Mack WJ, Towfighi A. Trends in acute ischemic stroke hospitalizations in the United States. J Am Heart Assoc 2016;5:e003233. https://doi.org/10.1161/JAHA.116.003233.
  10. Huang J, Upadhyay UM, Tamargo RJ. Inflammation in stroke and focal cerebral ischemia. Surg Neurol 2006;66:232-45. https://doi.org/10.1016/j.surneu.2005.12.028
  11. Sims NR, Muyderman H. Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta 2010;1802:80-91. https://doi.org/10.1016/j.bbadis.2009.09.003
  12. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet 2008;371: 1612-23. https://doi.org/10.1016/S0140-6736(08)60694-7
  13. Hachinski V, Azarpazhooh MR. Stroke is a burdensome but preventable brain disorder. Lancet Neurol 2016;15:892-3. https://doi.org/10.1016/S1474-4422(16)30120-X
  14. Hilbrich L, Truelsen T, Yusuf S. Stroke and cardiovascular diseases: the need for a global approach for prevention and drug development. Int J Stroke 2007;2:104-8. https://doi.org/10.1111/j.1747-4949.2007.00118.x
  15. Lenfant C. Can we prevent cardiovascular diseases in low- and middle-income countries? Bull World Health Organ 2001;79:980-7.
  16. Dong X, Zheng L, Lu S, Yang Y. Neuroprotective effects of pretreatment of ginsenoside Rb1 on severe cerebral ischemia-induced injuries in aged mice: involvement of anti-oxidant signaling. Geriatr Gerontol Int 2017;17:338-45. https://doi.org/10.1111/ggi.12699
  17. Hui Z, Sha DJ, Wang SL, Li CS, Qian J, Wang JQ, Zhao Y, Zhang JH, Cheng HY, Yang H, et al. Panaxatriol saponins promotes angiogenesis and enhances cerebral perfusion after ischemic stroke in rats. BMC Complement Altern Med 2017;17:70. https://doi.org/10.1186/s12906-017-1579-5.
  18. Park S, Lee B, Jin M, Cho S. Comparison of network pharmacology based analysis on white ginseng and red ginseng. Herb Formula Sci 2020;28: 243-54. https://doi.org/10.14374/HFS.2020.28.3.243
  19. Lee SE, Lim C, Lee M, Kim CH, Kim H, Lee B, Cho S. Assessing neuroprotective effects of Glycyrrhizae Radix et Rhizoma extract using a transient middle cerebral artery occlusion mouse model. J Vis Exp 2018;142. https://doi.org/10.3791/58454.
  20. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J 2001;357:593-615. https://doi.org/10.1042/0264-6021:3570593.
  21. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990;87:1620-4. https://doi.org/10.1073/pnas.87.4.1620
  22. Moncada S, Higgs EA. Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest 1991;21:361-74. https://doi.org/10.1111/j.1365-2362.1991.tb01383.x
  23. Guo C, Yang M, Jing L, Wang J, Yu Y, Li Y, Duan J, Zhou X, Li Y, Sun Z. Amorphous silica nanoparticles trigger vascular endothelial cell injury through apoptosis and autophagy via reactive oxygen species-mediated MAPK/Bcl-2 and PI3K/Akt/mTOR signaling. Int J Nanomedicine 2016;11:5257-76. https://doi.org/10.2147/IJN.S112030
  24. Li L, Du JK, Zou LY, Wu T, Lee YW, Kim YH. Decursin isolated from Angelica gigas Nakai rescues PC12 cells from amyloid beta-protein-induced neurotoxicity through Nrf2-mediated upregulation of heme oxygenase-1: potential roles of MAPK. Evid Based Complement Alternat Med 2013:467245. https://doi.org/10.1155/2013/467245.
  25. Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 2011;1813:1619-33. https://doi.org/10.1016/j.bbamcr.2010.12.012
  26. Dorrington MG, Fraser IDC. NF-κB signaling in macrophages: dynamics, crosstalk, and signal integration. Front Immunol 2019;10:705. https://doi.org/10.3389/fimmu.2019.00705.
  27. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017;2:17023. https://doi.org/10.1038/sigtrans.2017.23.
  28. Ambe K, Watanabe H, Takahashi S, Nakagawa T. Immunohistochemical localization of Nox1, Nox4 and Mn-SOD in mouse femur during endochondral ossification. Tissue Cell 2014;46:433-8. https://doi.org/10.1016/j.tice.2014.07.005
  29. Kinoshita M, Sakamoto T, Kashio A, Shimizu T, Yamasoba T. Age-related hearing loss in Mn-SOD heterozygous knockout mice. Oxid Med Cell Longev 2013:325702. https://doi.org/10.1155/2013/325702.
  30. Lu X, Wang C, Liu B. The role of Cu/Zn-SOD and Mn-SOD in the immune response to oxidative stress and pathogen challenge in the clam Meretrix meretrix. Fish Shellfish Immunol 2015;42:58-65. https://doi.org/10.1016/j.fsi.2014.10.027
  31. Jung JE, Kim GS, Narasimhan P, Song YS, Chan PH. Regulation of Mnsuperoxide dismutase activity and neuroprotection by STAT3 in mice after cerebral ischemia. J Neurosci 2009;29:7003-14. https://doi.org/10.1523/JNEUROSCI.1110-09.2009
  32. Scorziello A, Santillo M, Adornetto A, Dell'aversano C, Sirabella R, Damiano S, Canzoniero LMT, Di Renzo GF, Annunziato L. NO-induced neuroprotection in ischemic preconditioning stimulates mitochondrial Mn-SOD activity and expression via Ras/ERK1/2 pathway. J Neurochem 2007;103:1472-80. https://doi.org/10.1111/j.1471-4159.2007.04845.x
  33. Ramesh T, Kim S, Hwang S, Sohn S, Yoo S, Kim S. Panax ginseng reduces oxidative stress and restores antioxidant capacity in aged rats. Nutr Res 2012;32:718-26. https://doi.org/10.1016/j.nutres.2012.08.005
  34. Dunn KM, Renic M, Flasch AK, Harder DR, Falck J, Roman RJ. Elevated production of 20-HETE in the cerebral vasculature contributes to severity of ischemic stroke and oxidative stress in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2008;295:H2455-65. https://doi.org/10.1152/ajpheart.00512.2008.
  35. Tsutsumi YM, Tsutsumi R, Mawatari K, Nakaya Y, Kinoshita M, Tanaka K, Oshita S. Compound K, a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/PI3K pathway. Life Sci 2011;88:725-9. https://doi.org/10.1016/j.lfs.2011.02.011
  36. Kim HJ, Kim P, Shin CY. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res 2013;37:8-29. https://doi.org/10.5142/jgr.2013.37.8
  37. Zheng GQ, Cheng W, Wang Y, Wang XM, Zhao SZ, Zhou Y, Liu SJ, Wang XT. Ginseng total saponins enhance neurogenesis after focal cerebral ischemia. J Ethnopharmacol 2011;133:724-8. https://doi.org/10.1016/j.jep.2010.01.064
  38. Ban JY, Kang SW, Lee JS, Chung JH, Ko YG, Choi HS. Korean red ginseng protects against neuronal damage induced by transient focal ischemia in rats. Exp Ther Med 2012;3:693-8. https://doi.org/10.3892/etm.2012.449
  39. Liu L, Vollmer MK, Fernandez VM, Dweik Y, Kim H, Dore S. Korean red ginseng pretreatment protects against long-term sensorimotor deficits after ischemic stroke likely through Nrf2. Front Cell Neurosci 2018;12:74. https://doi.org/10.3389/fncel.2018.00074.
  40. Gao X, Zhang H, Takahashi T, Hsieh J, Liao J, Steinberg GK, Zhao H. The Akt signaling pathway contributes to postconditioning's protection against stroke; the protection is associated with the MAPK and PKC pathways. J Neurochem 2008;105:943-55. https://doi.org/10.1111/j.1471-4159.2008.05218.x
  41. Sawe N, Steinberg G, Zhao H. Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res 2008;86:1659-69. https://doi.org/10.1002/jnr.21604
  42. Sun J, Nan G. The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke. J Mol Neurosci 2016;59:90-8. https://doi.org/10.1007/s12031-016-0717-8