• 제목/요약/키워드: Cellular imaging

검색결과 180건 처리시간 0.019초

Array-Based Real-Time Ultrasound and Photoacoustic Ocular Imaging

  • Nam, Seung Yun;Emelianov, Stanislav Y.
    • Journal of the Optical Society of Korea
    • /
    • 제18권2호
    • /
    • pp.151-155
    • /
    • 2014
  • Although various ophthalmic imaging methods, including fundus photography and optical coherence tomography, have been applied for effective diagnosis of ocular diseases with high spatial resolution, most of them are limited by shallow imaging penetration depth and a narrow field of view. Also, many of those imaging modalities are optimized to provide microscopic anatomical information, while functional or cellular information is lacking. Compared to other ocular imaging modalities, photoacoustic imaging can achieve relatively deep penetration depth and provide more detailed functional and cellular data based on photoacoustic signal generation from endogenous contrast agents such as hemoglobin and melanin. In this paper, array-based ultrasound and photoacoustic imaging was demonstrated to visualize pigmentation in the eye as well as overall ocular structure. Fresh porcine eyes were visualized using a real-time ultrasound micro-imaging system and an imaging probe supporting laser pulse delivery. In addition, limited photoacoustic imaging field of view was improved by an imaging probe tilting method, enabling visualization of most regions of the retina covered in the ultrasound imaging.

Motility Contrast Imaging for Drug Screening Applications

  • Jeong, Kwan
    • Journal of the Optical Society of Korea
    • /
    • 제19권4호
    • /
    • pp.382-389
    • /
    • 2015
  • Motility contrast imaging is a coherence-domain imaging technique that uses cellular motility as a fully endogenous imaging contrast agent. Motility is measured inside tissue using a digital holographic coherence gate that extracts dynamic speckle from fixed depths. The dynamic speckle arises from the normal organelle motion inside cells, and from the movement of the cellular membranes driven by the cytoskeleton. It measures cellular activity and the effects of temperature and osmolarity. Motion is sensitive to cytoskeletal drugs, such as the antimitotic drugs used for cancer chemotherapy, and the effects of drug combinations also can be monitored. Motility contrast imaging is a potential tissue-based assay platform for highthroughput screening of pharmaceuticals.

분자핵의학영상 개관 (General Perspectives for Molecular Nuclear Imaging)

  • 정준기
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.111-114
    • /
    • 2004
  • Molecular imaging provides a visualization of normal as well as abnormal cellular processes at a molecular or genetic level rather than at a anatomical level. Conventional medical imaging methods utilize the imaging signals produced by nonspecific physico-chemical interaction. However, molecular imaging methods utilize the imaging signals derived from specific cellular or molecular events. Because molecular and genetic changes precede anatomical change in the course of disease development, molecular imaging can detect early events in disease progression. in the near future, through molecular imaging we can understand basic mechanisms of disease, and diagnose earlier and, subsequently, treat earlier intractable diseases such as cancer, neuro-degenerative diseases, and immunologic disorders. In beginning period, nuclear medicine started as a molecular imaging, and has had a leading role in the field of molecular imaging. But recently molecular imaging has been rapidly developed. Besides nuclear imaging, molecular imaging methods such as optical imaging, magnetic resonance imaging are emerging. Each imaging modalities have their advantages and weaknesses. The opportunities from molecular imaging look bright. We should try nuclear medicine continues to have a leading role in molecular imaging.

Quantitative and qualitative analysis of autophagy flux using imaging

  • Kim, Suree;Choi, Soohee;Kang, Dongmin
    • BMB Reports
    • /
    • 제53권5호
    • /
    • pp.241-247
    • /
    • 2020
  • As an intracellular degradation system, autophagy is an essential and defensive cellular program required for cell survival and cellular metabolic homeostasis in response to various stresses, such as nutrient deprivation and the accumulation of damaged organelles. In general, autophagy flux consists of four steps: (1) initiation (formation of phagophore), (2) maturation and completion of autophagosome, (3) fusion of autophagosomes with lysosomes (formation of autolysosome), and (4) degradation of intravesicular components within autolysosomes. The number of genes and reagents that modulate autophagy is increasing. Investigation of their effect on autophagy flux is critical to understanding the roles of autophagy in many physiological and pathological processes. In this review, we summarize and discuss ways to analyze autophagy flux quantitatively and qualitatively with the use of imaging tools. The suggested imaging method can help estimate whether each modulator is an inhibitor or a promoter of autophagy and elucidate the mode of action of specific genes and reagents on autophagy processes.

In Situ Single Cell Monitoring by Isocyanide-Functionalized Ag and Au Nanoprobe-Based Raman Spectroscopy

  • Lee, So-Yeong;Jang, Soo-Hwa;Cho, Myung-Haing;Kim, Young-Min;Cho, Keun-Chang;Ryu, Pan Dong;Gong, Myoung-Seon;Joo, Sang-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권9호
    • /
    • pp.904-910
    • /
    • 2009
  • The development of effective cellular imaging requires a specific labeling method for targeting, tracking, and monitoring cellular/molecular events in the living organism. For this purpose, we studied the cellular uptake of isocyanide-functionalized silver and gold nanoparticles by surface-enhanced Raman scattering (SERS). Inside a single mammalian cell, we could monitor the intracellular behavior of such nanoparticles by measuring the SERS spectra. The NC stretching band appeared clearly at ${\sim}2,100cm^{-1}$ in the well-isolated spectral region from many organic constituents between 300 and 1,700 or 2,800 and $3,600cm^{-1}$. The SERS marker band at ${\sim}2,100cm^{-1}$ could be used to judge the location of the isocyanide-functionalized nanoparticles inside the cell without much spectral interference from other cellular constituents. Our results demonstrate that isocyanide-modified silver or gold nanoparticle-based SERS may have high potential for monitoring and imaging the biological processes at the single cell level.

연 X-선 현미경을 이용한 금 나노입자 세포영상 (Cellular Imaging of Gold Nanoparticles Using a Compact Soft X-Ray Microscope)

  • 권영만;김한경;김경우;김선희;윤홍화;천권수;강성훈;박성훈;정선관;윤권하
    • Applied Microscopy
    • /
    • 제38권3호
    • /
    • pp.235-243
    • /
    • 2008
  • 연 x-선 현미경은 '물의 창' 영역 ($2.3{\sim}4.4nm$)의 파장을 이용하여, 수십 nm의 분해능으로 세포를 파괴하지 않고 살아있는 상태에서 세포의 내부구조를 관찰할 수 있어 가시광선현미경과 전자현미경을 단점을 보완하는 특징을 갖는 세포 생물학 연구에 적합한 현미경이다. 그러나 기존 연 x-선 현미경은 광원으로 방사선 가속기를 이용하기 때문에 사용이 제한적이었다. 이에, 본 연구에서는 2.88nm의 연 x-선을 광원으로 사용하는 소형 연 x-선 현미경을 이용하여, 내포작용에 의해 금 나노입자를 포획한 HT1080과 MDA-MB 231 세포의 영상을 약 60nm 분해능으로 획득하였다. 금 나노입자의 세포에 대한 독성을 제거하기 위하여 폴리에틸렌 글리콜을 캡핑하였고, 2.88nm 파장의 연 x-선에 대하여 충분한 조영효과로 인하여 세포영상에서 뚜렷한 대조도를 나타내었다. 내포작용에 의해 액포에 포함되어 있는 다양한 크기의 금 나노입자 군집을 확인하였으며, 세포내부의 액포의 분포상태도 관찰할 수 있었다. 따라서 고분해능을 가진 소형 연 x-선 현미경을 이용하여 금 나노입자를 세포내의 미세기관이나 특정 단백질에 표지하면 연 x-선에 대한 조영효과의 증가에 의하여 더욱 유용한 정보를 획득할 수 있을 것으로 생각한다.

Intravital Laser-scanning Two-photon and Confocal Microscopy for Biomedical Research

  • Moon, Jieun;Kim, Pilhan
    • Medical Lasers
    • /
    • 제10권1호
    • /
    • pp.1-6
    • /
    • 2021
  • Intravital microscopy is a high-resolution imaging technique based on laser-scanning two-photon and confocal microscopy, which allows dynamic 3D cellular-level imaging of various biological processes in a living animal in vivo. This unique capability allows biomedical researchers to directly verify a hypothesis in a natural in vivo microenvironment at the cellular level in a physiological setting. During the last decade, intravital microscopy has become an indispensable technique in several fields of biomedical sciences such as molecular and cell biology, immunology, neuroscience, developmental, and tumor biology. The most distinct advantage of intravital microscopy is its capability to provide a longitudinal view of disease progression at the cellular-level with repeated intravital imaging of a single animal over time by saving the images after each session.

In vivo molecular and single cell imaging

  • Hong, Seongje;Rhee, Siyeon;Jung, Kyung Oh
    • BMB Reports
    • /
    • 제55권6호
    • /
    • pp.267-274
    • /
    • 2022
  • Molecular imaging is used to improve the disease diagnosis, prognosis, monitoring of treatment in living subjects. Numerous molecular targets have been developed for various cellular and molecular processes in genetic, metabolic, proteomic, and cellular biologic level. Molecular imaging modalities such as Optical Imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Computed Tomography (CT) can be used to visualize anatomic, genetic, biochemical, and physiologic changes in vivo. For in vivo cell imaging, certain cells such as cancer cells, immune cells, stem cells could be labeled by direct and indirect labeling methods to monitor cell migration, cell activity, and cell effects in cell-based therapy. In case of cancer, it could be used to investigate biological processes such as cancer metastasis and to analyze the drug treatment process. In addition, transplanted stem cells and immune cells in cell-based therapy could be visualized and tracked to confirm the fate, activity, and function of cells. In conventional molecular imaging, cells can be monitored in vivo in bulk non-invasively with optical imaging, MRI, PET, and SPECT imaging. However, single cell imaging in vivo has been a great challenge due to an extremely high sensitive detection of single cell. Recently, there has been great attention for in vivo single cell imaging due to the development of single cell study. In vivo single imaging could analyze the survival or death, movement direction, and characteristics of a single cell in live subjects. In this article, we reviewed basic principle of in vivo molecular imaging and introduced recent studies for in vivo single cell imaging based on the concept of in vivo molecular imaging.

Molecular Imaging in the Age of Genomic Medicine

  • Byun, Jong-Hoe
    • Genomics & Informatics
    • /
    • 제5권2호
    • /
    • pp.46-55
    • /
    • 2007
  • The convergence of molecular and genetic disciplines with non-invasive imaging technologies has provided an opportunity for earlier detection of disease processes which begin with molecular and cellular abnormalities. This emerging field, known as molecular imaging, is a relatively new discipline that has been rapidly developed over the past decade. It endeavors to construct a visual representation, characterization, and quantification of biological processes at the molecular and cellular level within living organisms. One of the goals of molecular imaging is to translate our expanding knowledge of molecular biology and genomic sciences into good patient care. The practice of molecular imaging is still largely experimental, and only limited clinical success has been achieved. However, it is anticipated that molecular imaging will move increasingly out of the research laboratory and into the clinic over the next decade. Non-invasive in vivo molecular imaging makes use of nuclear, magnetic resonance, and in vivo optical imaging systems. Recently, an interest in Positron Emission Tomography (PET) has been revived, and along with optical imaging systems PET is assuming new, important roles in molecular genetic imaging studies. Current PET molecular imaging strategies mostly rely on the detection of probe accumulation directly related to the physiology or the level of reporter gene expression. PET imaging of both endogenous and exogenous gene expression can be achieved in animals using reporter constructs and radio-labeled probes. As increasing numbers of genetic markers become available for imaging targets, it is anticipated that a better understanding of genomics will contribute to the advancement of the molecular genetic imaging field. In this report, the principles of non-invasive molecular genetic imaging, its applications and future directions are discussed.

Ambient Mass Spectrometry in Imaging and Profiling of Single Cells: An Overview

  • Bharath Sampath Kumar
    • Mass Spectrometry Letters
    • /
    • 제14권4호
    • /
    • pp.121-140
    • /
    • 2023
  • It is becoming more and more clear that each cell, even those of the same type, has a unique identity. This sophistication and the diversity of cell types in tissue are what are pushing the necessity for spatially distributed omics at the single-cell (SC) level. Single-cell chemical assessment, which also provides considerable insight into biological, clinical, pharmacodynamic, pathological, and toxicity studies, is crucial to the investigation of cellular omics (genomics, metabolomics, etc.). Mass spectrometry (MS) as a tool to image and profile single cells and subcellular organelles facilitates novel technical expertise for biochemical and biomedical research, such as assessing the intracellular distribution of drugs and the biochemical diversity of cellular populations. It has been illustrated that ambient mass spectrometry (AMS) is a valuable tool for the rapid, straightforward, and simple analysis of cellular and sub-cellular constituents and metabolites in their native state. This short review examines the advances in ambient mass spectrometry (AMS) and ambient mass spectrometry imaging (AMSI) on single-cell analysis that have been authored in recent years. The discussion also touches on typical single-cell AMS assessments and implementations.