In Situ Single Cell Monitoring by Isocyanide-Functionalized Ag and Au Nanoprobe-Based Raman Spectroscopy

  • Lee, So-Yeong (Department of Pharmacology, College of Veterinary Medicine, Seoul National University) ;
  • Jang, Soo-Hwa (Department of Pharmacology, College of Veterinary Medicine, Seoul National University) ;
  • Cho, Myung-Haing (Department of Toxicology, College of Veterinary Medicine, Seoul National University) ;
  • Kim, Young-Min (Department of Chemistry, Soongsil University) ;
  • Cho, Keun-Chang (Department of Chemistry, Soongsil University) ;
  • Ryu, Pan Dong (Department of Pharmacology, College of Veterinary Medicine, Seoul National University) ;
  • Gong, Myoung-Seon (Department of Chemistry, Dankook University) ;
  • Joo, Sang-Woo (Department of Chemistry, Soongsil University)
  • Published : 2009.09.30

Abstract

The development of effective cellular imaging requires a specific labeling method for targeting, tracking, and monitoring cellular/molecular events in the living organism. For this purpose, we studied the cellular uptake of isocyanide-functionalized silver and gold nanoparticles by surface-enhanced Raman scattering (SERS). Inside a single mammalian cell, we could monitor the intracellular behavior of such nanoparticles by measuring the SERS spectra. The NC stretching band appeared clearly at ${\sim}2,100cm^{-1}$ in the well-isolated spectral region from many organic constituents between 300 and 1,700 or 2,800 and $3,600cm^{-1}$. The SERS marker band at ${\sim}2,100cm^{-1}$ could be used to judge the location of the isocyanide-functionalized nanoparticles inside the cell without much spectral interference from other cellular constituents. Our results demonstrate that isocyanide-modified silver or gold nanoparticle-based SERS may have high potential for monitoring and imaging the biological processes at the single cell level.

Keywords

References

  1. Bae, S. J., C.-R. Lee, I. S. Choi, C.-S. Hwang, M.-S. Gong, K. Kim, and S.-W. Joo. 2002. Adsorption of 4-biphenylisocyanide on gold and silver nanoparticle surfaces: Surface-enhanced Raman scattering study. J. Phys. Chem. B 106: 7076-7080 https://doi.org/10.1021/jp020237c
  2. Bae, Y. M., K.-W. Park, B.-K. Oh, and J.-W. Choi. 2006. Immunosensor for detection of Escherichia coli O157:H7 using imaging ellipsometry. J. Microbiol. Biotechnol. 16: 1169-1173
  3. Chanson, M., B. A. Kotsias, C. Peracchia, and S. M. O'Grady. 2007. Interaction of gap junction channels with other membrane channels and transporters. Prog. Biophys. Mol. Biol. 94: 233- 244 https://doi.org/10.1016/j.pbiomolbio.2007.03.002
  4. Douglas, K. L., C. A. Piccirillo, and M. Tabrizian. 2008. Cell line-dependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors. Eur. J. Pharm. Biopharm. 68: 676-687 https://doi.org/10.1016/j.ejpb.2007.09.002
  5. Eliasson, C., A. Lor$\acute{e}$n, J. Engelbrektsson, M. Josefson, J. Abrahamsson, and K. Abrahamsson. 2005. Surface-enhanced Raman scattering imaging of single living lymphocytes with multivariate evaluation. Spectrochim. Acta Part A 61: 755-760 https://doi.org/10.1016/j.saa.2004.05.038
  6. Fleischmann, H., P. J. Hendra, and A. J. McQuillan. 1974. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26: 163-166 https://doi.org/10.1016/0009-2614(74)85388-1
  7. Han, H. S., S. W. Han, S. W. Joo, and K. Kim. 1999. Adsorption of 1,4-phenylene diisocyanide on silver investigated by infrared and Raman spectroscopy. Langmuir 15: 6868- 6874 https://doi.org/10.1021/la990396w
  8. Henderson, J. I., S. Feng, T. Bein, and C. P. Kubiak. 2000. Adsorption of diisocyanides on gold. Langmuir 16: 6183-6187 https://doi.org/10.1021/la9906323
  9. Hu, Q., L.-L. Tay, M. Noestheden, and J. P. Pezacki. 2007. Mammalian cell surface imaging with nitrile-functionalized nanoprobes: Biophysical characterization of aggregation and polarization anisotropy in SERS imaging. J. Am. Chem. Soc. 129: 14-15 https://doi.org/10.1021/ja0670005
  10. Joo, S.-W., J. K. Lim, and K. Cho. 2008. Resonance Raman process and photo-induced phase transition via 632.8 nm irradiation for diacetylene monocarboxylic acid derivative selfassembled layers on Ag surfaces. Photochem. Photobio A 194: 356-361 https://doi.org/10.1016/j.jphotochem.2007.08.017
  11. Joo, S.-W., W.-J. Kim, W. S. Yun, S. Hwang, and I. S. Choi. 2004. Binding of aromatic isocyanides on gold nanoparticle surfaces investigated by surface-enhanced Raman scattering. Appl. Spectrosc. 58: 218-223 https://doi.org/10.1366/000370204322842968
  12. Joo, S.-W., W.-J. Kim, W. S. Yun, and I. S. Choi. 2003. Adsorption of 4,4'-biphenyl diisocyanide on gold nanoparticle surfaces investigated by surface-enhanced Raman scattering. J. Raman Spectrosc. 34: 271-275 https://doi.org/10.1002/jrs.994
  13. Joo, S.-W. and Y. S. Kim. 2004. Surface-enhanced Raman scattering study of benzyl mercaptide and benzyl isocyanide on gold and silver nanocolloid surfaces. Coll. Surf. A 234: 117 https://doi.org/10.1016/j.colsurfa.2003.12.011
  14. Jun, B.-H., J.-H. Kim, H. Park, J.-S. Kim, K.-N. Yu, S.-M. Lee, et al. 2007. Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay. Comb. Chem. 9: 237-244 https://doi.org/10.1021/cc0600831
  15. Kneipp, K., A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, et al. 2002. Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl. Spectrosc. 56: 150-154 https://doi.org/10.1366/0003702021954557
  16. Kneipp, J., H. Kneipp, K. Kneipp, M. McLaughlin, and D. Brown. 2008. Surface-enhanced Raman scattering for investigations of eukaryotic cells, pp. 243-261. In P. Lasch and J. Kneipp (eds.). Biomedical Vibrational Spectroscopy. John Wiley & Sons, New York
  17. Kim, J.-H., J.-S. Kim, H. Choi, S.-M. Lee, B.-H. Jun, Y. E. Kuk, et al. 2006. Nanoparticle probes with surface-enhanced Raman spectroscopic tags for cellular cancer targeting. Anal. Chem. 78: 6967-6973 https://doi.org/10.1021/ac0607663
  18. Kim, S., K. Ihm, T.-H. Kang, S. Hwang, and S.-W. Joo. 2005. Binding property and structure of aromatic isocyanide selfassembly monolayers on Ag and Au surfaces. Surf. Interf. Anal. 37: 294-299 https://doi.org/10.1002/sia.2019
  19. Kim, Y.-J., R. Neelamegam, M.-A. Heo, S. Edwardraja, H.-J. Paik, and S.-G. Lee. 2008. Improving the productivity of singlechain singlechain Fv antibody against c-Met by rearranging the order of its variable domains. J. Microbiol. Biotechnol. 18: 1186-1190
  20. Lee, C.-R., S. Kim, C. J. Yoon, M.-S. Gong, B. K. Choi, K. Kim, and S.-W. Joo. 2004. Size-dependent adsorption of 1,4-phenylenediisocyanide onto gold nanoparticle surfaces. J. Colloid Interface Sci. 271: 41-46 https://doi.org/10.1016/j.jcis.2003.10.020
  21. Lee, P. C. and D. Meisel. 1982. Adsorption and surfaceenhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86: 3391-3395 https://doi.org/10.1021/j100214a025
  22. Lee, S., S. Kim, J. Choo, S. Y. Shin, Y. H. Lee, H. Y. Choi, S. Ha, K. Kang, and C. H. Oh. 2007. Biological imaging of HEK293 cells expressing PLCgamma 1 using surface-enhanced Raman microscopy. Anal. Chem. 79: 916-922 https://doi.org/10.1021/ac061246a
  23. Li, H. and L. Rothberg. 2004. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Nat. Acad. Sci. U.S.A. 101: 14036-14039 https://doi.org/10.1073/pnas.0406115101
  24. Lin, S. and R. L. McCarley. 1999. Surface-confined monomers on electrode surfaces. Adsorption and polymerization of 1,6- diisocyanohexane on Au and Pt. Langmuir 15: 151-159 https://doi.org/10.1021/la981083o
  25. Lu, C.-W., Y. Hung, J.-K. Hsiao, M. Yao, T.-H. Chung, Y.-S. Lin, et al. 2007. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett. 7: 149- 154 https://doi.org/10.1021/nl0624263
  26. McFarland, A. D. and R. P. Van Duyne. 2003. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3: 1057-1062 https://doi.org/10.1021/nl034372s
  27. Nithipatikom, K., M. J. McCoy, S. R. Hawi, K. Nakamoto, F. Adar, and W. B. Campbell. 2003. Characterization and application of Raman labels for confocal Raman microspectroscopic detection of cellular proteins in single cells. Anal. Biochem. 322: 198- 207 https://doi.org/10.1016/j.ab.2003.07.020
  28. Patra, H. K., S. Banerjee, U. Chaudhuri, P. Lahiri, and A. Kr Dasgupta. 2007. Cell selective response to gold nanoparticles. Nanomedicine 3: 111-119 https://doi.org/10.1016/j.nano.2007.03.005
  29. Rejman, J., V. Oberle, I. S. Zuhorn, and D. Hoekstra. 2004. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377: 159-169 https://doi.org/10.1042/BJ20031253
  30. Schatz, G. C. and R. P. Van Duyne. 2002. Electromagnetic mechanism of surface-enhanced spectroscopy, pp. 759-774. In J. M. Chalmers and P. R. Griffiths (eds.). Handbook of Vibrational Spectroscopy. John Wiley & Sons, New York
  31. Shipway, A. N., E. Katz, and I. Willner. 2000. Nanoparticle arrays on surfaces for electronic, optical and sensoric applications. ChemPhysChem 1: 18-52 https://doi.org/10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L
  32. Suh, J., D. Wirtz, and J. Hanes. 2003. Efficient active transport of gene nanocarriers to the cell nucleus. Proc. Natl. Acad. Sci. U.S.A. 100: 3878-3882 https://doi.org/10.1073/pnas.0636277100
  33. Tang, H. W., X. B. Yang, J. Kirkham, and D. A. Smith. 2007. Probing intrinsic and extrinsic components in single osteosarcoma cells by near-infrared surface-enhanced Raman scattering. Anal. Chem. 79: 3646-3653 https://doi.org/10.1021/ac062362g
  34. Vo-Dinh, T., P. Kasili, and M. Wabuyele. 2006. Nanoprobes and nanobiosensors for monitoring and imaging individual living cells. Nanomedicine 2: 22-30 https://doi.org/10.1016/j.nano.2005.10.012