Browse > Article

Molecular Imaging in the Age of Genomic Medicine  

Byun, Jong-Hoe (Department of Molecular Biology, BK21 graduate program for RNA Biology, Institute of Nanosensor and Biotechnology, Dankook University)
Abstract
The convergence of molecular and genetic disciplines with non-invasive imaging technologies has provided an opportunity for earlier detection of disease processes which begin with molecular and cellular abnormalities. This emerging field, known as molecular imaging, is a relatively new discipline that has been rapidly developed over the past decade. It endeavors to construct a visual representation, characterization, and quantification of biological processes at the molecular and cellular level within living organisms. One of the goals of molecular imaging is to translate our expanding knowledge of molecular biology and genomic sciences into good patient care. The practice of molecular imaging is still largely experimental, and only limited clinical success has been achieved. However, it is anticipated that molecular imaging will move increasingly out of the research laboratory and into the clinic over the next decade. Non-invasive in vivo molecular imaging makes use of nuclear, magnetic resonance, and in vivo optical imaging systems. Recently, an interest in Positron Emission Tomography (PET) has been revived, and along with optical imaging systems PET is assuming new, important roles in molecular genetic imaging studies. Current PET molecular imaging strategies mostly rely on the detection of probe accumulation directly related to the physiology or the level of reporter gene expression. PET imaging of both endogenous and exogenous gene expression can be achieved in animals using reporter constructs and radio-labeled probes. As increasing numbers of genetic markers become available for imaging targets, it is anticipated that a better understanding of genomics will contribute to the advancement of the molecular genetic imaging field. In this report, the principles of non-invasive molecular genetic imaging, its applications and future directions are discussed.
Keywords
molecular genetic imaging; reporter gene imaging; probe; PET; genomics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cong, X. and Nilsen-Hamilton, M. (2005). Allosteric aptamers: targeted reversibly attenuated probes. Biochemistry 44, 7945-7954   DOI   ScienceOn
2 Luker, G.D., Sharma, V., Pica, C.M., Dahlheimer, J.L., Li, W., Ochesky, J., Ryan, C.E., Piwnica-Worms, H., and Piwnica-Worms, D. (2002). Noninvasive imaging of protein-protein interactions in living animals. Proc. Natl. Acad. Sci. U S A 99, 6961-6966
3 Massoud, T.F. and Gambhir, S.S. (2003). Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545-580   DOI   ScienceOn
4 Reivich, M., Kuhl, D., Wolf, A., Greenberg, J., Phelps, M., Ido, T., Casella, V., Fowler, J., Gallagher, B., Hoffman, E., Alavi, A., and Sokoloff, L. (1977). Measurement of local cerebral glucose metabolism in man with 18F-2-fluoro- 2-deoxy- d-glucose. Acta. Neurol. Scand. Suppl. 64, 190-191
5 Tavitian, B., Terrazzino, S., Kuhnast, B., Marzabal, S., Stettler, O., Dolle, F., Deverre, J.R., Jobert, A., Hinnen, F., Bendriem, B., Crouzel, C., and Di Giamberardino, L. (1998). In vivo imaging of oligonucleotides with positron emission tomography. Nat. Med. 4, 467-471   DOI   ScienceOn
6 Massoud, T.F. and Gambhir, S.S. (2007). Integrating noninvasive molecular imaging into molecular medicine: an evolving paradigm. Trends. Mol. Med. 13, 183-191   DOI   ScienceOn
7 Parrish, J.R., Gulyas, K.D., and Finley, R.L. (2006). Yeast two-hybrid contributions to interactome mapping. Curr. Opin. Biotechnol. 17, 387-393   DOI   ScienceOn
8 Rossi, F., Charlton, C.A., and Blau, H.M. (1997). Monitoring protein-protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc. Natl. Acad. Sci. U S A 94, 8405-8410
9 Britz-Cunningham, S.H. and Adelstein, S.J. (2003). Molecular targeting with radionuclides: state of the science. J. Nucl. Med. 44, 1945-1961
10 Inubushi, M., Wu, J.C., Gambhir, S.S., Sundaresan, G., Satyamurthy, N., Namavari, M., Yee, S., Barrio, J.R., Stout, D., Chatziioannou, A.F., Wu, L., and Schelbert, H.R. (2003). Positron-emission tomography reporter gene expression imaging in rat myocardium. Circulation 107, 326-332   DOI   ScienceOn
11 Miyagawa, T., Oku, T., Uehara, H., Desai, R., Beattie, B., Tjuvajev, J., and Blasberg, R. (1998). 'Facilitated' amino acid transport is up-regulated in brain tumors. J. Cereb. Blood Flow Metab. 18, 500-509   DOI
12 Stagljar, I., Korostensky, C., Johnsson, N., and te Heesen, S. (1998). A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc. Natl. Acad. Sci. U S A 95, 5187-5192
13 Tjuvajev, J.G., Doubrovin, M., Akhurst, T., Cai, S., Balatoni, J., Alauddin, M.M., Finn, R., Bornmann, W., Thaler, H., Conti, P.S., and Blasberg, R.G. (2002). Comparison of radiolabelled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J. Nucl. Med. 43, 1072-1083
14 Blasberg, R.G. and Tjuvajev, J.G. (2002). In vivo molecular-genetic imaging. J. Cell. Biochem. Suppl. 39, 172-183
15 De Vries, E.F., Vroegh, J., Dijkstra, G., Moshage, H., Elsinga, P.H., Jansen, P.L., and Vaalburg, W. (2004). Synthesis and evaluation of a fluorine-18 labeled antisense oligonucleotide as a potential PET tracer for iNOS mRNA expression. Nucl. Med. Biol. 31, 605-612   DOI   ScienceOn
16 Haberkorn, U. (2001).Gene therapy with sodium/iodide symporter in hepatocarcinoma. Exp. Clin. Endocrinol. Diabetes. 1, 60-62
17 Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O., and Shinohara, M. (1977). The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897-916   DOI
18 Lee, J.Y., Lee, Y.S., Kim, J.M., Kim, K.L., Lee, J.S., Jang, H.S., Shin, I.S., Suh, W., Jeon, E.S., Byun, J., and Kim, D.K. (2006). A novel chimeric promoter that is highly responsive to hypoxia and metals. Gene Ther. 13, 857-868   DOI
19 Chun, H.J., Wilson, K.O., Huang, M., and Wu, J.C. (2007). Integration of genomics, proteomics, and imaging for cardiac stem cell therapy. Eur. J. Nucl. Med. Mol. Imaging [Epub ahead of print] doi:10.1007/s00259-007-0437-y
20 Gambhir, S.S., Herschman, H.R., Cherry, S.R., Barrio, J.R., Satyamurthy, N., Toyokuni, T., Phelps, M.E., Larson, S.M., Balatoni, J., Finn, R., Sadelain, M., Tjuvajev, J., and Blasberg, R. (2000). Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2, 118-138   DOI
21 Blasberg, R.G. and Tjuvajev, J.G. (2003). Molecular-genetic imaging: current and future perspectives. J. Clin. Invest. 111, 1620-1629   DOI
22 Penuelas, I., Mazzolini, G., Boan, J.F., Sangro, B., Marti-Climent, J., Ruiz, M., Ruiz, J., Satyamurthy, N., Qian, C., Barrio, J.R., Phelps, M.E., Richter, J.A., Gambhir, S.S., and Prieto, J. (2005). Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 128, 1787-1795   DOI   ScienceOn
23 Ray, P., Pimenta, H., Paulmurugan, R., Berger, F., Phelps, M.E., Iyer, M., and Gambhir, S.S. (2002). Noninvasive quantitative imaging of protein-protein interactions in living subjects. Proc. Natl. Acad. Sci. U S A 99, 3105-3110   DOI   ScienceOn
24 Remy, I. and Michnick, S.W. (2007). Application of protein-fragment complementation assays in cell biology. Biotechniques 42, 137-141   DOI
25 Ponomarev, V., Doubrovin, M., Shavrin, A., Serganova, I., Beresten, T., Ageyeva, L., Cai, C., Balatoni, J., Alauddin, M., and Gelovani, J. (2007). A Human-Derived Reporter Gene for Noninvasive Imaging in Humans: Mitochondrial Thymidine Kinase Type 2. J. Nucl. Med. 48, 819-826   DOI
26 von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., and Bork, P. (2002). Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399-403   DOI
27 Eyckerman, S., Verhee, A., der Heyden, J.V., Lemmens, I., Ostade, X.V., Vandekerckhove, J., and Tavernier, J. (2001). Design and application of a cytokine-receptorbased interaction trap. Nat. Cell. Biol. 3, 1114-1119   DOI   ScienceOn
28 Mintun, M.A., Welch, M.J., Siegel, B.A., Mathias, C.J., Brodack, J.W., McGuire, A.H., and Katzenellenbogen, J.A. (1988). Breast cancer: PET imaging of estrogen receptors. Radiology 169, 45-48   DOI
29 Bengel, F.M., Anton, M., Richter, T., Simoes, M.V., Haubner, R., Henke, J., Erhardt, W., Reder, S., Lehner, T., Brandau, W., Boekstegers, P., Nekolla, S.G., Gansbacher, B., and Schwaiger, M. (2003). Noninvasive imaging of transgene expression by use of positron emission tomography in a pig model of myocardial gene transfer. Circulation 108, 2127-2133   DOI   ScienceOn
30 Blasberg, R.G. (2003). In vivo molecular-genetic imaging: multi-modality nuclear and optical combinations. Nucl. Med. Biol. 30, 879-888   DOI   ScienceOn
31 Frost, M.L., Cook, G.J., Blake, G.M., Marsden, .P.K., and Fogelman, I. (2007). The relationship between regional bone turnover measured using 18F-fluoride positron emission tomography and changes in BMD is equivalent to that seen for biochemical markers of bone turnover. J. Clin. Densitom. 10, 46-54   DOI   ScienceOn
32 Jacobs, A., Voges, J., Reszka, R., Lercher, M., Gossmann, A., Kracht, L., Kaestle, C., Wagner, R., Wienhard, K., and Heiss, W.D. (2001). Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358, 727-729   DOI   ScienceOn
33 Chang, G.Y., Cao, F., Krishnan, M., Huang, M., Li, Z., Xie, X., Sheikh, A.Y., Hoyt, G., Robbins, R.C., Hsiai, T., Schneider, M.D., and Wu, J.C. (2007). Positron emission tomography imaging of conditional gene activation in the heart. J. Mol. Cell. Cardiol. [Epub ahead of print] doi:10.1016/j.yjmcc.2007.03.809