Browse > Article
http://dx.doi.org/10.5483/BMBRep.2020.53.5.046

Quantitative and qualitative analysis of autophagy flux using imaging  

Kim, Suree (Department of Life Science, Fluorescence Core Imaging Center, Ewha Womans University)
Choi, Soohee (Department of Life Science, Fluorescence Core Imaging Center, Ewha Womans University)
Kang, Dongmin (Department of Life Science, Fluorescence Core Imaging Center, Ewha Womans University)
Publication Information
BMB Reports / v.53, no.5, 2020 , pp. 241-247 More about this Journal
Abstract
As an intracellular degradation system, autophagy is an essential and defensive cellular program required for cell survival and cellular metabolic homeostasis in response to various stresses, such as nutrient deprivation and the accumulation of damaged organelles. In general, autophagy flux consists of four steps: (1) initiation (formation of phagophore), (2) maturation and completion of autophagosome, (3) fusion of autophagosomes with lysosomes (formation of autolysosome), and (4) degradation of intravesicular components within autolysosomes. The number of genes and reagents that modulate autophagy is increasing. Investigation of their effect on autophagy flux is critical to understanding the roles of autophagy in many physiological and pathological processes. In this review, we summarize and discuss ways to analyze autophagy flux quantitatively and qualitatively with the use of imaging tools. The suggested imaging method can help estimate whether each modulator is an inhibitor or a promoter of autophagy and elucidate the mode of action of specific genes and reagents on autophagy processes.
Keywords
Autolysosome; Autophagosome; Autophagy; Fluorescence Imaging; Quantitative analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118, 7-18   DOI
2 Massey AC, Zhang C and Cuervo AM (2006) Chaperonemediated autophagy in aging and disease. Curr Top Dev Biol 73, 205-235   DOI
3 Li WW, Li J and Bao JK (2012) Microautophagy: lesserknown self-eating. Cell Mol Life Sci 69, 1125-1136   DOI
4 Yang Z and Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335, 1-32   DOI
5 Levine B, Mizushima N and Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469, 323-335   DOI
6 Melendez A and Neufeld TP (2008) The cell biology of autophagy in metazoans: a developing story. Development 135, 2347-2360   DOI
7 Mizushima N, Levine B, Cuervo AM and Klionsky DJ (2008) Autophagy fights disease through cellular selfdigestion. Nature 451, 1069-1075   DOI
8 Mathew R, Karantza-Wadsworth V and White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7, 961-967   DOI
9 Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19, 983-997   DOI
10 Yue Z, Jin S, Yang C, Levine AJ and Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100, 15077-15082   DOI
11 Mizushima N, Yoshimori T and Levine B (2010) Methods in mammalian autophagy research. Cell 140, 313-326   DOI
12 Nakatogawa H, Suzuki K, Kamada Y and Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10, 458-467   DOI
13 Vakifahmetoglu-Norberg H, Xia HG and Yuan J (2015) Pharmacologic agents targeting autophagy. J Clin Invest 125, 5-13   DOI
14 Pankiv S, Clausen TH, Lamark T et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282, 24131-24145   DOI
15 Yoshii SR and Mizushima N (2017) Monitoring and Measuring Autophagy. Int J Mol Sci 18, 1-13   DOI
16 Mizushima N and Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3, 542-545   DOI
17 Bjorkoy G, Lamark T, Brech A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171, 603-614   DOI
18 Gordon PB and Seglen PO (1988) Prelysosomal convergence of autophagic and endocytic pathways. Biochem Biophys Res Commun 151, 40-47   DOI
19 Glick D, Barth S and Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221, 3-12   DOI
20 Mizushima N (2007) Autophagy: process and function. Genes Dev 21, 2861-2873   DOI
21 Yu L, McPhee CK, Zheng L et al (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942-946   DOI
22 Klionsky DJ, Abdelmohsen K, Abe A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1-222   DOI
23 Itakura E and Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6, 764-776   DOI
24 Matsunaga K, Saitoh T, Tabata K et al (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11, 385-396   DOI
25 Weidberg H, Shvets E and Elazar Z (2011) Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 80, 125-156   DOI
26 Obara K, Sekito T, Niimi K and Ohsumi Y (2008) The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem 283, 23972-23980   DOI
27 Axe EL, Walker SA, Manifava M et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182, 685-701   DOI
28 Polson HE, de Lartigue J, Rigden DJ et al (2010) Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6, 506-522   DOI
29 Noda T, Matsunaga K, Taguchi-Atarashi N and Yoshimori T (2010) Regulation of membrane biogenesis in autophagy via PI3P dynamics. Semin Cell Dev Biol 21, 671-676   DOI
30 Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V and Elazar Z (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29, 1792-1802   DOI
31 Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19, 5720-5728   DOI
32 Webb JL, Ravikumar B and Rubinsztein DC (2004) Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int J Biochem Cell Biol 36, 2541-2550   DOI
33 Kielian MC and Cohn ZA (1982) Intralysosomal accumulation of polyanions. II. Polyanion internalization and its influence on lysosomal pH and membrane fluidity. J Cell Biol 93, 875-882   DOI
34 Chevrier M, Brakch N, Celine L et al (2010) Autophagosome maturation is impaired in Fabry disease. Autophagy 6, 589-599   DOI
35 Noda T and Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273, 3963-3966   DOI
36 Mauvezin C and Neufeld TP (2015) Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPasedependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy 11, 1437-1438   DOI
37 Shaner NC, Steinbach PA and Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2, 905-909   DOI
38 Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE and Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22, 1567-1572   DOI
39 Lim JM, Lee KS, Woo HA, Kang D and Rhee SG (2015) Control of the pericentrosomal H2O2 level by peroxiredoxin I is critical for mitotic progression. J Cell Biol 210, 23-33   DOI
40 Vezina C, Kudelski A and Sehgal SN (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28, 721-726   DOI
41 Nicot AS and Laporte J (2008) Endosomal phosphoinositides and human diseases. Traffic 9, 1240-1249   DOI
42 Simonsen A, Birkeland HC, Gillooly DJ et al (2004) Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. J Cell Sci 117, 4239-4251   DOI
43 Ronan B, Flamand O, Vescovi L et al (2014) A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat Chem Biol 10, 1013-1019   DOI
44 He S, Ni D, Ma B et al (2013) PtdIns(3)P-bound UVRAG coordinates Golgi-ER retrograde and Atg9 transport by differential interactions with the ER tether and the beclin 1 complex. Nat Cell Biol 15, 1206-1219   DOI
45 Klionsky DJ, Abeliovich H, Agostinis P et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151-175   DOI
46 Itakura E, Kishi-Itakura C and Mizushima N (2012) The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256-1269   DOI
47 Ueno K, Saito M, Nagashima M et al (2014) V-ATPasedependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p. Biochem Biophys Res Commun 443, 549-555   DOI
48 Wang Y, Li Y, Wei F and Duan Y (2017) Optical Imaging Paves the Way for Autophagy Research. Trends Biotechnol 35, 1181-1193   DOI