Browse > Article
http://dx.doi.org/10.3807/JOSK.2015.19.4.382

Motility Contrast Imaging for Drug Screening Applications  

Jeong, Kwan (Department of Physics, Korea Military Academy)
Publication Information
Journal of the Optical Society of Korea / v.19, no.4, 2015 , pp. 382-389 More about this Journal
Abstract
Motility contrast imaging is a coherence-domain imaging technique that uses cellular motility as a fully endogenous imaging contrast agent. Motility is measured inside tissue using a digital holographic coherence gate that extracts dynamic speckle from fixed depths. The dynamic speckle arises from the normal organelle motion inside cells, and from the movement of the cellular membranes driven by the cytoskeleton. It measures cellular activity and the effects of temperature and osmolarity. Motion is sensitive to cytoskeletal drugs, such as the antimitotic drugs used for cancer chemotherapy, and the effects of drug combinations also can be monitored. Motility contrast imaging is a potential tissue-based assay platform for highthroughput screening of pharmaceuticals.
Keywords
Tissue-based screening; Drug combinations; Digital holography; Dynamic speckle; Anti-mitotic drug;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).   DOI
2 U. Schnars and W. P. O. Juptner, "Direct recording of holograms by a CCD-target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994).   DOI
3 U. Schnars and W. P. O. Juptner, "Direct recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).   DOI   ScienceOn
4 I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, "Image formation in phase-shifting digital holography and applications to microscopy," Appl. Opt. 40, 6177-6186 (2001).   DOI
5 F. Charriere, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, "Cell refractive index tomography by digital holographic microscopy," Opt. Lett. 31, 178-180 (2006).   DOI   ScienceOn
6 C. J. Mann, L. F. Yu, and M. K. Kim, "Movies of cellular and sub-cellular motion by digital holographic microscopy," Biomed. Eng. Online 5, 21 (2006).
7 E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999).   DOI
8 B. Javidi and T. Nomura, "Securing information by use of digital holography," Opt. Lett. 25, 28-30 (2000).   DOI
9 K. Jeong, J. J. Turek, and D. D. Nolte, "Fourier-domain digital holographic optical coherence imaging of living tissue," Appl. Opt. 46, 4999-5008 (2007).   DOI
10 D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).   DOI
11 J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Select. Topics Quantum Electron. 5, 1205-1215 (1999).   DOI   ScienceOn
12 J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).   DOI   ScienceOn
13 K. Jeong, J. J. Turek, and D. D. Nolte, "Volumetric motilitycontrast imaging of tissue response to cytoskeletal anti-cancer drugs," Opt. Express 15, 14057-14064 (2007).   DOI
14 T. C. Chou, "Drug combination studies and their synergy quantification using the Chou-Talalay method," Cancer Res. 70, 440-446 (2010).   DOI   ScienceOn
15 J. Lehar, A. S. Krueger, W. Avery, A. M. Heilbut, L. M. Johansen, E. R. Price, R. J. Rickles, G. F. Short, J. E. Staunton, X. Jin, M. S. Lee, G. R. Zimmermann, and A. A. Borisy, "Synergistic drug combinations tend to improve therapeutically relevant selectivity," Nat. Biotechnol. 27, 659-666 (2009).   DOI   ScienceOn
16 L. A. Kunz-Schughart, M. Kreutz, and R. Knuechel, "Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology," Int. J. Exp. Pathol. 79, 1-23 (1998).
17 K. Groebe and W. Mueller-Klieser, "On the relation between size of necrosis and diameter of tumor spheroids," Int. J. Radiat. Oncol. Biol. Phys. 34, 395-401 (1996).   DOI   ScienceOn
18 L. A. Kunz-Schughart, J. P. Freyer, F. Hofstaedter, and R. Ebner, "The use of 3-D cultures for high-throughput screening: the multicellular spheroid model," J. Biomol. Screen. 9, 273-285 (2004).   DOI
19 J. Ishikawa, M. Oshima, F. Iwasaki, R. Suzuki, J. Park, K. Nakao, Y. Matsuzawa-Adachi, T. Mizutsuki, A. Kobayashi, Y. Abe, E. Kobayashi, K. Tezuka, and T. Tsuji, "Hypothermic temperature effects on organ survival and restoration," Sci. Rep. 5, 9563 (2015).   DOI   ScienceOn
20 M. A. Jordan, D. Thrower, and L. Wilson, "Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles," J. Cell Sci. 102, 401-416 (1992).
21 M. A. Jordan and L. Wilson, "Microtubules and actin filaments: dynamic targets for cancer chemotherapy," Curr. Opin. Cell Biol. 10, 123-130 (1998).   DOI   ScienceOn
22 J. A. Cooper, "Effects of cytochalasin and phalloidin on actin," J. Cell Biol. 105, 1473-1478 (1987).   DOI   ScienceOn
23 L. L. Marden, C. R. Crawford, and R. E. Bryant, "Depletion and recovery of ATP in V79 cells with exposure to inhibitors of glycolysis and oxidative phosphorylation," In Vitro 18, 550-556 (1982).   DOI
24 T. C. Chou, "Drug combination studies and their synergy quantification using the Chou-Talalay method," Cancer Res. 70, 440-446 (2010).   DOI   ScienceOn