DOI QR코드

DOI QR Code

In vivo molecular and single cell imaging

  • Hong, Seongje (Department of Anatomy, College of Medicine, Chung-Ang University) ;
  • Rhee, Siyeon (Stanford Cardiovascular Institute, Stanford University School of Medicine) ;
  • Jung, Kyung Oh (Department of Anatomy, College of Medicine, Chung-Ang University)
  • Received : 2022.02.20
  • Accepted : 2022.04.29
  • Published : 2022.06.30

Abstract

Molecular imaging is used to improve the disease diagnosis, prognosis, monitoring of treatment in living subjects. Numerous molecular targets have been developed for various cellular and molecular processes in genetic, metabolic, proteomic, and cellular biologic level. Molecular imaging modalities such as Optical Imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Computed Tomography (CT) can be used to visualize anatomic, genetic, biochemical, and physiologic changes in vivo. For in vivo cell imaging, certain cells such as cancer cells, immune cells, stem cells could be labeled by direct and indirect labeling methods to monitor cell migration, cell activity, and cell effects in cell-based therapy. In case of cancer, it could be used to investigate biological processes such as cancer metastasis and to analyze the drug treatment process. In addition, transplanted stem cells and immune cells in cell-based therapy could be visualized and tracked to confirm the fate, activity, and function of cells. In conventional molecular imaging, cells can be monitored in vivo in bulk non-invasively with optical imaging, MRI, PET, and SPECT imaging. However, single cell imaging in vivo has been a great challenge due to an extremely high sensitive detection of single cell. Recently, there has been great attention for in vivo single cell imaging due to the development of single cell study. In vivo single imaging could analyze the survival or death, movement direction, and characteristics of a single cell in live subjects. In this article, we reviewed basic principle of in vivo molecular imaging and introduced recent studies for in vivo single cell imaging based on the concept of in vivo molecular imaging.

Keywords

Acknowledgement

We thank to Suyeon Lee for the graphic illustration in Fig. 2.

References

  1. Blasberg RG and Gelovani-Tjuvajev J (2002) In vivo molecular-genetic Imaging. J Cell Biochem 39, 172-183
  2. Kang JH and Chung JK (2008) Molecular-genetic imaging based on reporter gene expression. J Nuc Med 49, 164S-179S https://doi.org/10.2967/jnumed.107.045955
  3. Kircher MF, Grambhir SS and Grimm J (2011) Noninvasive cell-tracking methods. Nat Rev Clin Oncol 8, 677-688 https://doi.org/10.1038/nrclinonc.2011.141
  4. Youn H and Hong KJ (2012) In vivo noninvasive small animal molecular imaging. Osong Public Health Res Perspect 3, 48-59 https://doi.org/10.1016/j.phrp.2012.02.002
  5. Sabapathy V, Mentam J, Jacob PM and Kumar S (2015) Noninvasive optical imaging and in vivo cell tracking of indocyanine green labeled human stem cells transplanted at superficial or in-depth tissue of SCID mice. Stem Cell Int 2015, 606415
  6. Penuelas I, Mazzolini G, Boan JF et al (2005) Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterolog 128, 1787-1795 https://doi.org/10.1053/j.gastro.2005.03.024
  7. Rogeers WJ, Meyer CH and Kramer C (2006) Technology insight: in vivo cell tracking by use of MRI. Nat Clin Pract Cardiovasc Med 3, 554-562 https://doi.org/10.1038/ncpcardio0659
  8. Kwak YH, Hong SM and Park SS (2010) A single cell tracking system in real-time. Cell Immuno 265, 44-49 https://doi.org/10.1016/j.cellimm.2010.07.001
  9. Carlson AL, Fujisaki J, Wu J et al (2013) Tracking single cells in live animals using a photoconvertible nearinfrared cell membrane label. PLoS One 8, e69257 https://doi.org/10.1371/journal.pone.0069257
  10. Jung KO, Kim TJ, Yu JH et al (2020) Whole-body tracking of single cells via positron emission tomography. Nat Biomed Eng 4, 835-844 https://doi.org/10.1038/s41551-020-0570-5
  11. Herschman HR (2004). Noninvasive imaging of reporter gene expression in living subjects. Adv Cancer Res 92, 29-80 https://doi.org/10.1016/S0065-230X(04)92003-9
  12. Shaner NC, Steinbach PA and Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2, 905-909 https://doi.org/10.1038/nmeth819
  13. Pan K, Deng H, Hu S et al (2020) Real-time surveillance of surgical margins via ICG-based near-infrared fluorescence imaging in patients with OSCC. World J Surg Oncol 18, 96 https://doi.org/10.1186/s12957-020-01874-z
  14. Chiu CH, Chao YK, Liu YH et al (2016) Clinical use of near-infrared fluorescence imaging with indocyanine green in thoracic surgery: a literature review. J Thorac Dis 8, S744-S748 https://doi.org/10.21037/jtd.2016.09.70
  15. Kosaka N, Ogawa M, Choyke PL and Kobayashi H (2009) Clinical implications of near-infrared fluorescence imaging in cancer. Future Oncol 5, 1501-1511 https://doi.org/10.2217/fon.09.109
  16. Hoffman RM (2015) Application of GFP imaging in cancer. Lab Invest 95, 432-452 https://doi.org/10.1038/labinvest.2014.154
  17. Yang M, Baranov E, Jiang P et al (2000) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci U S A 97, 1206-1211 https://doi.org/10.1073/pnas.97.3.1206
  18. Bouvet M, Wang J, Nardin SR et al (2002) Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model. Cancer Res 62, 1534-1540
  19. Suetsugu A, Osawa Y, Nagaki M et al (2010) Simultaneous color-coded imaging to distinguish cancer "stem-like" and non-stem cells in the same tumor. J Cell Biochem 111, 1035-1341 https://doi.org/10.1002/jcb.22792
  20. Suetsugu A, Jiang P, Moriwaki H, Saji S, Bouvet M and Hoffman RM (2013) Imaging nuclear - cytoplasm dynamics of cancer cells in the intravascular niche of live mice. Anticancer Res 33, 4229-4236
  21. Yano S, Zhang Y, Zhao M et al (2014) Tumor-targeting Salmonella typhimurium A1-R decoys quiescent cancer cells to cycle as visualized by FUCCI imaging and become sensitive to chemotherapy. Cell Cycle 13, 3958-3963 https://doi.org/10.4161/15384101.2014.964115
  22. Yano S, Miwa S, Mii S et al (2014) Invading cancer cells are predominantly in G0/G1 resulting in chemoresistance demonstrated by real-time FUCCI imaging. Cell Cycle 13, 953-960 https://doi.org/10.4161/cc.27818
  23. Contag CH, Contag PR, Mullins JI, Spilman SD, Stevenson DK and Benaron DA (1995) Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 18, 593-603 https://doi.org/10.1111/j.1365-2958.1995.mmi_18040593.x
  24. Hwang MH, Li XJ, Kim JE et al (2015) Potential therapeutic effect of natural killer cells on Doxorubicin-resistant breast cancer cells in vitro. PLoS One 10, e0136209 https://doi.org/10.1371/journal.pone.0136209
  25. Hochgrafe K and Mandelkow EM (2013) Making the brain glow: in vivo bioluminescence imaging to study neurodegeneration. Mol Neurobiol 47, 868-882 https://doi.org/10.1007/s12035-012-8379-1
  26. Van der Jeugd A, Hochgrafe K, Ahmed T et al (2012) Cognitive defects are reversible in inducible mice expressing pro-aggregant full-length human Tau. Acta Neuropathol 123, 787-805 https://doi.org/10.1007/s00401-012-0987-3
  27. Reumers V, Deroose CM, Krylyshkina O et al (2008) Noninvasive and quantitative monitoring of adult neuronal stem cell migration in mouse brain using bioluminescence imaging. Stem Cells 26, 2382-2390 https://doi.org/10.1634/stemcells.2007-1062
  28. Prinz A, Diskar M and Herberg FW (2006) Application of bioluminescence resonance energy transfer (BRET) for biomolecular interaction studies. ChemBioChem 7, 1007-1012 https://doi.org/10.1002/cbic.200600048
  29. Kobayashi H, Picard LP, Schonegge AM and Bouvier M (2019) Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells. Nat Protoc 14, 1084-1107. https://doi.org/10.1038/s41596-019-0129-7
  30. Dale NC, Johnstone EK, White CW and Pfleger KD (2019) NanoBRET: the bright future of proximity-based assays. Front Bioeng Biotechnol 7, 56 https://doi.org/10.3389/fbioe.2019.00056
  31. England CG, Ehlerding EB and Cai W (2016) NanoLuc: a small luciferase is brightening up the field of bioluminescence. Bioconjug Chem 27, 1175-1187 https://doi.org/10.1021/acs.bioconjchem.6b00112
  32. El Khamlichi C, Reverchon-Assadi F, Hervouet-Coste N, Blot L, Reiter E and Morisset-Lopez S (2019) Bioluminescence resonance energy transfer as a method to study protein-protein interactions: application to G protein coupled receptor biology. Molecules 24, 537 https://doi.org/10.3390/molecules24030537
  33. Picard LP, Schonegge AM, Lohse MJ and Bouvier M (2018) Bioluminescence resonance energy transfer-based biosensors allow monitoring of ligand-and transducer-mediated GPCR conformational changes. Commun Biol 1, 106 https://doi.org/10.1038/s42003-018-0101-z
  34. Yang C, Tian R, Liu T and Liu G (2016) MRI reporter genes for noninvasive molecular imaging. Molecules 21, 580 https://doi.org/10.3390/molecules21050580
  35. Zhang R, Feng G, Zhang CJ, Cai X, Cheng X and Liu B (2016) Real-time specific light-up sensing of transferrin receptor (TfR): Image-guided photodynamic ablation of cancer cells through controlled cytomembrane disintegration. Anal Chem 88, 4841-4848 https://doi.org/10.1021/acs.analchem.6b00524
  36. Qin C, Cheng K, Chen K et al (2013) Tyrosinase as a multifunctional reporter gene for Photoacoustic/MRI/PET triple modality molecular imaging. Sci Rep 3, 1-8
  37. Gilad AA, Winnard Jr PT, van Zijl PC and Bulte JW (2007) Developing MR reporter genes: promises and pitfalls. NMR Biomed 20, 275-290 https://doi.org/10.1002/nbm.1134
  38. Vande Velde G, Rangarajan JR, Toelen J et al (2011) Evaluation of the specificity and sensitivity of ferritin as an MRI reporter gene in the mouse brain using lentiviral and adeno-associated viral vectors. Gene Ther 18, 594-605 https://doi.org/10.1038/gt.2011.2
  39. Kim HS, Woo J, Lee JH et al (2015) In vivo tracking of dendritic cell using MRI reporter gene, Ferritin. PLoS One 10, e0125291 https://doi.org/10.1371/journal.pone.0125291
  40. Gilad AA, McMahon MT, Walczak P et al (2007) Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 25, 217-219 https://doi.org/10.1038/nbt1277
  41. Massoud TF and Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17, 545-580 https://doi.org/10.1101/gad.1047403
  42. Bull E, Madani SY, Sheth R, Seifalian A, Green M and Seifalian AM (2014) Stem cell tracking using iron oxide nanoparticles. Int J Nanomedicine 9, 1641
  43. Fan K, Lu C, Shu G et al (2021) Sialic acid-engineered mesoporous polydopamine dual loaded with ferritin gene and SPIO for achieving endogenous and exogenous synergistic T2-weighted magnetic resonance imaging of HCC. J Nanobiotechnol 19, 1-17 https://doi.org/10.1186/s12951-020-00755-7
  44. Omami G, Tamimi D, Branstetter BF et al (2014) Basic principles and applications of 18F-FDG-PET/CT in oral and maxillofacial imaging: a pictorial essay. Imaging Sci Dent 44, 325-332 https://doi.org/10.5624/isd.2014.44.4.325
  45. Keu VK, Witney TH, Yaghoubi S et al (2017) Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med 9, eaag2196 https://doi.org/10.1126/scitranslmed.aag2196
  46. MacLaren DC, Gambhir SS, Satyamurthy N et al (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6, 785-791 https://doi.org/10.1038/sj.gt.3300877
  47. Chung JK (2002) Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 43, 1188-1200
  48. Rinne P, Hellberg S, Kiugel M et al (2016) Comparison of Somatostatin receptor 2-targeting PET tracers in the detection of mouse atherosclerotic plaques. Mol Imaging Biol 18, 99-108 https://doi.org/10.1007/s11307-015-0873-1
  49. Furukawa T, Lohith TG, Takamatsu S, Mori T, Tanaka T and Fujibayashi Y (2006) Potential of the FES-hERL PET reporter gene system-basic evaluation for gene therapy monitoring. Nucl Med Biol 33, 145-151 https://doi.org/10.1016/j.nucmedbio.2005.07.013
  50. Altmann A, Kissel M, Zitzmann S et al (2003) Increased MIBG uptake after transfer of the human norepinephrine transporter gene in rat hepatoma. J Nucl Med 44, 973-980
  51. Moroz MA, Serganova I, Zanzonico P et al (2007) Imaging hNET reporter gene expression with 124I-MIBG. J Nucl Med 48, 827-836 https://doi.org/10.2967/jnumed.106.037812
  52. Berberat P, Friess H, Kashiwagi M, Beger HG and Buchler MW (1999) Diagnosis and staging of pancreatic cancer by positron emission tomography. World J Surg 23, 882-887 https://doi.org/10.1007/s002689900593
  53. Stockhofe K, Postema JM, Schieferstein H and Ross TL. (2014) Radiolabeling of nanoparticles and polymers for PET imaging. Pharmaceuticals 7, 392-418 https://doi.org/10.3390/ph7040392
  54. Neves AA, Xie B, Fawcett S et al (2017) Rapid imaging of tumor cell death in vivo using the C2A domain of Synaptotagmin-I. J Nucl Med 58, 881-887 https://doi.org/10.2967/jnumed.116.183004
  55. Schier AF (2020) Single-cell biology: beyond the sum of its parts. Nat Methods 17, 17-20 https://doi.org/10.1038/s41592-019-0693-3
  56. Kichimaru T, Iwano S, Kiyama M et al (2016) A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging. Nat Commun 7, 1-8
  57. Iwano S, Sugiyama M, Hama H et al (2018) Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 359, 935-939 https://doi.org/10.1126/science.aaq1067
  58. Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE and Koretsky AP (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci U S A 101, 10901-10906 https://doi.org/10.1073/pnas.0403918101
  59. Shapiro EM, Sharer K, Skrtic S and Koretsky AP (2006) In vivo detection of single cells by MRI. Magn Reson Med 55, 242-249 https://doi.org/10.1002/mrm.20718
  60. Shapiro EM, Skrtic S and Koretsky AP (2005) Sizing it up: Cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53, 329-338 https://doi.org/10.1002/mrm.20342
  61. Heyn C, Ronald JA, Ramadan SS et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56, 1001-1010 https://doi.org/10.1002/mrm.21029
  62. Masedunskas A, Milberg O, Porat-Shliom N et al (2012) Intravital microscopy: a practical guide on imaging intracellular structures in live animals. Bioarchitecture 2, 143-157 https://doi.org/10.4161/bioa.21758
  63. Thurber GM, Yang KS, Reiner T et al (2013) Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat Commun 4, 1-10
  64. Hoover EE and Squier JA (2013) Advances in multiphoton microscopy technology. Nat Photonics 7, 93-101 https://doi.org/10.1038/nphoton.2012.361
  65. Morimoto A, Kikuta J and Ishii M (2020) Intravital multiphoton microscopy as a novel tool in the field of immunopharmacology. Pharmacol Ther 206, 107429 https://doi.org/10.1016/j.pharmthera.2019.107429
  66. Liang Y and Walczak P (2021) Long term intravital single cell tracking under multiphoton microscopy. J Neurosci Methods 349, 109042 https://doi.org/10.1016/j.jneumeth.2020.109042
  67. Lopez MJ, Seyed-Razavi Y, Yamaguchi T et al (2020) Multiphoton intravital microscopy of mandibular draining lymph nodes: a mouse model to study corneal immune responses. Front Immunol 11, 39 https://doi.org/10.3389/fimmu.2020.00039
  68. Carney B, Kossatz S and Reiner T (2017) Molecular Imaging of PARP. J Nucl Med 58, 1025-1030 https://doi.org/10.2967/jnumed.117.189936
  69. Xu M and Wang LV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77, 041101 https://doi.org/10.1063/1.2195024
  70. Xia J, Yao J and Wang LV (2014) Photoacoustic tomography: principles and advances. Electromagnetic waves 147, 1-22 https://doi.org/10.2528/PIER14032303
  71. Wang L, Maslov K and Wang LV (2013) Single-cell labelree photoacoustic flowoxigraphy in vivo. Proc Natl Acad Sci U S A 110, 5759-5764 https://doi.org/10.1073/pnas.1215578110
  72. Parker D, Broadbent C, Fowles P, Hawkesworth M and McNeil P (1993) Positron emission particle tracking - a technique for studying fow within engineering equipment. Nucl. Instrum. Methods Phys Res A 326, 592-607 https://doi.org/10.1016/0168-9002(93)90864-E
  73. Lee K, Kim TJ and Pratx G (2015) Single-cell tracking with PET using a novel trajectory reconstruction algorithm. IEEE Trans Med Imaging 34, 994-1003 https://doi.org/10.1109/TMI.2014.2373351
  74. Ouyang Y, Kim TJ and Pratx G (2016) Evaluation of a BGO-based PET system for single-cell tracking performance by simulation and phantom studies. Mol Imaging 15, 1-8