Browse > Article

In Situ Single Cell Monitoring by Isocyanide-Functionalized Ag and Au Nanoprobe-Based Raman Spectroscopy  

Lee, So-Yeong (Department of Pharmacology, College of Veterinary Medicine, Seoul National University)
Jang, Soo-Hwa (Department of Pharmacology, College of Veterinary Medicine, Seoul National University)
Cho, Myung-Haing (Department of Toxicology, College of Veterinary Medicine, Seoul National University)
Kim, Young-Min (Department of Chemistry, Soongsil University)
Cho, Keun-Chang (Department of Chemistry, Soongsil University)
Ryu, Pan Dong (Department of Pharmacology, College of Veterinary Medicine, Seoul National University)
Gong, Myoung-Seon (Department of Chemistry, Dankook University)
Joo, Sang-Woo (Department of Chemistry, Soongsil University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.9, 2009 , pp. 904-910 More about this Journal
Abstract
The development of effective cellular imaging requires a specific labeling method for targeting, tracking, and monitoring cellular/molecular events in the living organism. For this purpose, we studied the cellular uptake of isocyanide-functionalized silver and gold nanoparticles by surface-enhanced Raman scattering (SERS). Inside a single mammalian cell, we could monitor the intracellular behavior of such nanoparticles by measuring the SERS spectra. The NC stretching band appeared clearly at ${\sim}2,100cm^{-1}$ in the well-isolated spectral region from many organic constituents between 300 and 1,700 or 2,800 and $3,600cm^{-1}$. The SERS marker band at ${\sim}2,100cm^{-1}$ could be used to judge the location of the isocyanide-functionalized nanoparticles inside the cell without much spectral interference from other cellular constituents. Our results demonstrate that isocyanide-modified silver or gold nanoparticle-based SERS may have high potential for monitoring and imaging the biological processes at the single cell level.
Keywords
In situ cellular imaging; nanoparticles; surface modification; Raman spectroscopy; cell monitoring;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Bae, S. J., C.-R. Lee, I. S. Choi, C.-S. Hwang, M.-S. Gong, K. Kim, and S.-W. Joo. 2002. Adsorption of 4-biphenylisocyanide on gold and silver nanoparticle surfaces: Surface-enhanced Raman scattering study. J. Phys. Chem. B 106: 7076-7080   DOI   ScienceOn
2 Henderson, J. I., S. Feng, T. Bein, and C. P. Kubiak. 2000. Adsorption of diisocyanides on gold. Langmuir 16: 6183-6187   DOI   ScienceOn
3 Joo, S.-W., J. K. Lim, and K. Cho. 2008. Resonance Raman process and photo-induced phase transition via 632.8 nm irradiation for diacetylene monocarboxylic acid derivative selfassembled layers on Ag surfaces. Photochem. Photobio A 194: 356-361   DOI   ScienceOn
4 Kneipp, K., A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, et al. 2002. Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl. Spectrosc. 56: 150-154   DOI   ScienceOn
5 Lee, C.-R., S. Kim, C. J. Yoon, M.-S. Gong, B. K. Choi, K. Kim, and S.-W. Joo. 2004. Size-dependent adsorption of 1,4-phenylenediisocyanide onto gold nanoparticle surfaces. J. Colloid Interface Sci. 271: 41-46   DOI   ScienceOn
6 Patra, H. K., S. Banerjee, U. Chaudhuri, P. Lahiri, and A. Kr Dasgupta. 2007. Cell selective response to gold nanoparticles. Nanomedicine 3: 111-119   DOI   PUBMED   ScienceOn
7 Schatz, G. C. and R. P. Van Duyne. 2002. Electromagnetic mechanism of surface-enhanced spectroscopy, pp. 759-774. In J. M. Chalmers and P. R. Griffiths (eds.). Handbook of Vibrational Spectroscopy. John Wiley & Sons, New York
8 Vo-Dinh, T., P. Kasili, and M. Wabuyele. 2006. Nanoprobes and nanobiosensors for monitoring and imaging individual living cells. Nanomedicine 2: 22-30   DOI   PUBMED   ScienceOn
9 Joo, S.-W., W.-J. Kim, W. S. Yun, and I. S. Choi. 2003. Adsorption of 4,4'-biphenyl diisocyanide on gold nanoparticle surfaces investigated by surface-enhanced Raman scattering. J. Raman Spectrosc. 34: 271-275   DOI   ScienceOn
10 Suh, J., D. Wirtz, and J. Hanes. 2003. Efficient active transport of gene nanocarriers to the cell nucleus. Proc. Natl. Acad. Sci. U.S.A. 100: 3878-3882   DOI   ScienceOn
11 Kim, J.-H., J.-S. Kim, H. Choi, S.-M. Lee, B.-H. Jun, Y. E. Kuk, et al. 2006. Nanoparticle probes with surface-enhanced Raman spectroscopic tags for cellular cancer targeting. Anal. Chem. 78: 6967-6973   DOI   ScienceOn
12 Lin, S. and R. L. McCarley. 1999. Surface-confined monomers on electrode surfaces. Adsorption and polymerization of 1,6- diisocyanohexane on Au and Pt. Langmuir 15: 151-159   DOI   ScienceOn
13 Li, H. and L. Rothberg. 2004. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Nat. Acad. Sci. U.S.A. 101: 14036-14039   DOI   ScienceOn
14 Eliasson, C., A. Lor$\acute{e}$n, J. Engelbrektsson, M. Josefson, J. Abrahamsson, and K. Abrahamsson. 2005. Surface-enhanced Raman scattering imaging of single living lymphocytes with multivariate evaluation. Spectrochim. Acta Part A 61: 755-760   DOI   ScienceOn
15 Han, H. S., S. W. Han, S. W. Joo, and K. Kim. 1999. Adsorption of 1,4-phenylene diisocyanide on silver investigated by infrared and Raman spectroscopy. Langmuir 15: 6868- 6874   DOI   ScienceOn
16 Joo, S.-W., W.-J. Kim, W. S. Yun, S. Hwang, and I. S. Choi. 2004. Binding of aromatic isocyanides on gold nanoparticle surfaces investigated by surface-enhanced Raman scattering. Appl. Spectrosc. 58: 218-223   DOI   ScienceOn
17 Fleischmann, H., P. J. Hendra, and A. J. McQuillan. 1974. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26: 163-166   DOI   ScienceOn
18 Joo, S.-W. and Y. S. Kim. 2004. Surface-enhanced Raman scattering study of benzyl mercaptide and benzyl isocyanide on gold and silver nanocolloid surfaces. Coll. Surf. A 234: 117   DOI   ScienceOn
19 Rejman, J., V. Oberle, I. S. Zuhorn, and D. Hoekstra. 2004. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377: 159-169   DOI   ScienceOn
20 Douglas, K. L., C. A. Piccirillo, and M. Tabrizian. 2008. Cell line-dependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors. Eur. J. Pharm. Biopharm. 68: 676-687   DOI   ScienceOn
21 Chanson, M., B. A. Kotsias, C. Peracchia, and S. M. O'Grady. 2007. Interaction of gap junction channels with other membrane channels and transporters. Prog. Biophys. Mol. Biol. 94: 233- 244   DOI   ScienceOn
22 Lu, C.-W., Y. Hung, J.-K. Hsiao, M. Yao, T.-H. Chung, Y.-S. Lin, et al. 2007. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett. 7: 149- 154   DOI   ScienceOn
23 Lee, P. C. and D. Meisel. 1982. Adsorption and surfaceenhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86: 3391-3395   DOI
24 Hu, Q., L.-L. Tay, M. Noestheden, and J. P. Pezacki. 2007. Mammalian cell surface imaging with nitrile-functionalized nanoprobes: Biophysical characterization of aggregation and polarization anisotropy in SERS imaging. J. Am. Chem. Soc. 129: 14-15   DOI   ScienceOn
25 McFarland, A. D. and R. P. Van Duyne. 2003. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3: 1057-1062   DOI   ScienceOn
26 Jun, B.-H., J.-H. Kim, H. Park, J.-S. Kim, K.-N. Yu, S.-M. Lee, et al. 2007. Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay. Comb. Chem. 9: 237-244   DOI   ScienceOn
27 Kim, Y.-J., R. Neelamegam, M.-A. Heo, S. Edwardraja, H.-J. Paik, and S.-G. Lee. 2008. Improving the productivity of singlechain singlechain Fv antibody against c-Met by rearranging the order of its variable domains. J. Microbiol. Biotechnol. 18: 1186-1190   PUBMED
28 Kim, S., K. Ihm, T.-H. Kang, S. Hwang, and S.-W. Joo. 2005. Binding property and structure of aromatic isocyanide selfassembly monolayers on Ag and Au surfaces. Surf. Interf. Anal. 37: 294-299   DOI   ScienceOn
29 Shipway, A. N., E. Katz, and I. Willner. 2000. Nanoparticle arrays on surfaces for electronic, optical and sensoric applications. ChemPhysChem 1: 18-52   DOI   ScienceOn
30 Lee, S., S. Kim, J. Choo, S. Y. Shin, Y. H. Lee, H. Y. Choi, S. Ha, K. Kang, and C. H. Oh. 2007. Biological imaging of HEK293 cells expressing PLCgamma 1 using surface-enhanced Raman microscopy. Anal. Chem. 79: 916-922   DOI   PUBMED   ScienceOn
31 Kneipp, J., H. Kneipp, K. Kneipp, M. McLaughlin, and D. Brown. 2008. Surface-enhanced Raman scattering for investigations of eukaryotic cells, pp. 243-261. In P. Lasch and J. Kneipp (eds.). Biomedical Vibrational Spectroscopy. John Wiley & Sons, New York
32 Nithipatikom, K., M. J. McCoy, S. R. Hawi, K. Nakamoto, F. Adar, and W. B. Campbell. 2003. Characterization and application of Raman labels for confocal Raman microspectroscopic detection of cellular proteins in single cells. Anal. Biochem. 322: 198- 207   DOI   ScienceOn
33 Bae, Y. M., K.-W. Park, B.-K. Oh, and J.-W. Choi. 2006. Immunosensor for detection of Escherichia coli O157:H7 using imaging ellipsometry. J. Microbiol. Biotechnol. 16: 1169-1173   과학기술학회마을   ScienceOn
34 Tang, H. W., X. B. Yang, J. Kirkham, and D. A. Smith. 2007. Probing intrinsic and extrinsic components in single osteosarcoma cells by near-infrared surface-enhanced Raman scattering. Anal. Chem. 79: 3646-3653   DOI   ScienceOn