• Title/Summary/Keyword: Cell Force Measurement

Search Result 103, Processing Time 0.028 seconds

Measurement of Mechanical Properties of Electroplated Nickel Thin Film for MEMS Application (미소 기전 시스템용 니켈 박막의 기계적 물성 측정)

  • Baek, Dong-Cheon;Park, Tae-Sang;Lee, Soon-Bok;Lee, Nag-Kyu;Choi, Tae-Hoon;Na, Kyoung-Hoan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1321-1325
    • /
    • 2003
  • Nickel thin film is one of the most important materials used in micromachined structure. To measure the mechanical properties of electroplated nickel thin film, two techniques are adopted and compared quantitatively with. One is nano-indentation test to measure the elastic modulus. The other is tensile test to measure not only elastic modulus but also yield strength and plastic deformation, ultimate strength. To perform the tensile test, the test apparatus was constructed with linear guided servo motor for actuation, load cell for force measurement and dual microscope for strain measurement.

  • PDF

The Effects of Tibial Rotation on Muscle Activity and Force of Hamstring Muscle During Isometric Knee Flexion in Healthy Women

  • Ko, Min-Joo;Kang, Min-Hyeok
    • PNF and Movement
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Purpose: The purpose of this study was to determine how the position of tibial rotation affects peak force and hamstring muscle activation during isometric knee flexion in healthy women. Methods: Seventeen healthy women performed maximum isometric knee flexion at 30˚ with three tibial rotation positions (tibial internal rotation, neutral position, and tibial external rotation). Surface electromyographic (EMG) activity was recorded from the medial hamstring (MH) and lateral hamstring (LH) muscles. The strength of the knee flexor was measured with a load-cell-type strength-measurement sensor. Data were analyzed using one-way repeated analysis of variance. Results: The results showed that MH and LH activities and peak force were significantly different among the three tibial rotation conditions (p < 0.01). The post-hoc comparison revealed that the MH EMG activity in tibial neutral and internal rotation positions were significantly greater than tibial external rotation (p < 0.01). The LH activity in tibial external rotation was significantly greater than the tibial neutral position and internal rotation (p < 0.01). The peak force of the knee flexor was also greater in the external tibial rotation position compared with the tibial neutral and internal rotation positions (p < 0.01). Conclusion: Our findings suggest that hamstring muscle activation could be changed by tibial rotation.

Characterization of Wavelength Effect on Photovoltaic Property of Poly-Si Solar Cell Using Photoconductive Atomic Force Microscopy (PC-AFM)

  • Heo, Jinhee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.160-163
    • /
    • 2013
  • We investigated the effect of light intensity and wavelength of a solar cell device by using photoconductive atomic force microscopy (PC-AFM). The $POCl_3$ diffusion doping process was used to produce a p-n junction solar cell device based on a Poly-Si wafer and the electrical properties of prepared solar cells were measured using a solar cell simulator system. The measured open circuit voltage ($V_{oc}$) is 0.59 V and the short circuit current ($I_{sc}$) is 48.5 mA. Also, the values of the fill factors and efficiencies of the devices are 0.7% and approximately 13.6%, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, was used for direct measurements of photoelectric characteristics in local instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics were observed. Results obtained through PC-AFM were compared with the electric/optical characteristics data obtained through a solar simulator. The voltage ($V_{PC-AFM}$) at which the current was 0 A in the I-V characteristic curves increased sharply up to 1.8 $mW/cm^2$, peaking and slowly falling as light intensity increased. Here, $V_{PC-AFM}$ at 1.8 $mW/cm^2$ was 0.29 V, which corresponds to 59% of the average $V_{oc}$ value, as measured with the solar simulator. Also, while light wavelength was increased from 300 nm to 1,100 nm, the external quantum efficiency (EQE) and results from PC-AFM showed similar trends at the macro scale, but returned different results in several sections, indicating the need for detailed analysis and improvement in the future.

Development of Force Measuring Device in Learning Wind Tunnel Used for Transportation Technology Class (수송 기술에 적합한 학습용 풍동의 힘 측정 장치 개발)

  • Choi, Jun-Seop;Lee, Sung-Gu
    • 대한공업교육학회지
    • /
    • v.32 no.1
    • /
    • pp.117-133
    • /
    • 2007
  • The purpose of this study was to develop the force measuring device of learning wind tunnel, teaching-learning materials in order to enhance understanding of flight principle and give interest about aviation technology in secondary school. The content of this study was consisted of the development and experiment of force measuring device for learning wind tunnel. The main results of this study were as follows: This device developed here is simple structure applying lever principle instead of the comparatively expensive load cell used in engineering college or a aviation research institute and so on. Measurement of lift and drag as well as the comparison experiment of a fluid resistance is possible with only one device developed here. The lift coefficient with angle of attack has shown the same tendency in both of theoretical and experimental values. And the stall phenomenon was found under the larger angle of attack of experimental rather than expected theoretical values. The drag coefficient with angle of attack has shown the same tendency in both of theoretical and experimental values. And drag coefficient the rate of increasement of the experimental values increased more gently than its theoretical values.

Non-contact Stress Measurement in Steel Member of PSC Box Bridge Using Raman Spectroscopy (라만 형광 분광법을 이용한 PSC 박스교 인장케이블 응력측정방법 연구)

  • Kim, Jongwoo;Kim, Namgyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.130-134
    • /
    • 2019
  • In this paper, a laser-based non-contact load cell is newly developed for measuring forces in prestressed concrete tendons. First, alumina particles have been sprayed onto an empty load cell which has no strain gauges on it, and the layer has been used as a passive stress sensor. Then, the spectral shifts in fluorescence spectroscopy have been measured using a laser-based spectroscopic system under various force levels, and it has been found that the relation of applied force and spectral shift is linear in a lab-scale test. To validate the field applicability of the customized load cell, a full-scale prestressed concrete specimen has been constructed in a yard. During the field test, it was, however, found that the coating surface has irregular stress distribution. Therefore, the location of a probe has to be fixed onto the customized load cell for using the coating layer as a passive stress sensor. So, a prototype customized load cell has been manufactured, which consists of a probe mount on its casing. Then, by performing lab-scale uniaxial compression tests with the prototype load cell, a linear relation between compression stress and spectrum shift at a specific point where laser light had been illuminated has been detected. Thus, it has a high possibility to use the prototype load cell as a force sensor of prestressed concrete tendons.

A Study on the Manufacturing of a High-Efficiency Load Cell Using a Single Surface Design (단일면으로 디자인한 고성능 로드셀 제작에 관한 연구)

  • Lee, Jung-Hyun;Lee, Woo-Ram
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.724-730
    • /
    • 2010
  • A load cell is a converter that generates voltage signals when a certain force is effected in a given direction. An essential measurement device for electronic scales that indicate weight by numbers. These load cells are being applied in various areas such as daily life, distribution, laboratory and industrial. Recently the study to manufacture load cells in a more simple method while increasing performance is being persisted. In this study based on the comparison of load cells manufactured through single surface processing using strain gauges. Those manufactured through dual surface processing using strain gauges. Ultimately persist a more simple method of load cell manufacturing while increasing its performance. The elements that were compared were linearity, hysteresis, creep and eccentricity which are short tenn performance factors. The conclusion was that single surface processing showed almost identical data as that of dual surface processing, and the load cell error rate(0.005%) also excess regulation. The manufacturing time was shortened while mass-production was possible. Which indicates a development in the weighing industry.

Corrosion of Quartz Crystal Sensors in Sea Water (항만센서용 수정진동자의 해수에 의한 부식)

  • ;;;A. Egawa;H. Muramatsu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.183-188
    • /
    • 1998
  • A quartz crystal analyzer is utilized to monitor the cmsion process of an aluminum surface of a quartz crystal by sea water. A quartz crystal having 2000${\AA}$ of aluminum layer is installed in a spedally designed cell and is in contact with an electrolyte solution. While a constant potential is applied to the cell, the resonant frequency and resonant resistance are simultaneously measured using the quartz crystal analyzer. In addition, surface topographs are taken with an atomic force microscope(AFM) and the element analysis of the surface is conducted using an energy dispersive X-ray spectrornetedEDX). The simultaneous measurement of resonant frequency and resonant resistance during the corrosion process explains the change of surface structure caused by the corrosion. The variation of resonant frequency addresses the amount surface metal dissolution. As a conclusion, it is found that a simple measurement using the quartz crystal analyzer can replace the complex monitoring employing large equipments in the investigation of a corrosion process of metal surface.

  • PDF

Deformation Measurement of Polymer Scaffold Using Particle Image Analysis (입자 영상 해석을 이용한 고분자 지지체 변형 측정)

  • Kang, Min Je;Oh, Sang Hoon;Rhee, Kyehan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • Polydimethylsiloxane (PDMS) is used as a scaffold for cell culture. Because both the stress and strain acting on the substrate and the hemodynamic environment are important for studying mechano-transduction of cellular function, the traction force of the surface of a substrate has been measured using fluorescence images of particle distribution. In this study, deformation of the cross-sectional plane of a PDMS block was measured by correlating particle image distributions to validate the particle image strain measurement technique. Deformation was induced by a cone indentor and a shearing parallel plate. Measured deformations from particle image distributions were in agreement with the results of a computational structure analysis using the finite-element method. This study demonstrates that the particle image correlation method facilitates measurement of deformation of a polymer scaffold in the cross-sectional plane.

Photovoltaic characteristics of Si quantum dots solar cells

  • Ko, Won-Bae;Lee, Jun-Seok;Lee, Sang-Hyo;Cha, Seung-Nam;Hong, Jin-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.489-489
    • /
    • 2011
  • The effect of Si quantum dots for solar cell appications was investigated. The 5 ~ 10 nm Si nanoparticle was fabricated on p-type single and poly crystalline wafer by magnetron sputtering and laser irradiation process. Scanning electron microscopy (SEM), atomic force measurement (AFM) and transmission electron microscopy (TEM) images showed that the Si QDs array were clearly embedded in insulating layer ($SiO_2$). Photoluminesence (PL) measurements reliably exhibited bandgap transitions with every size of Si QDs. The photo-current measurements were showed different result with size of QD and number of superlattice.

  • PDF

Activity Measurement in Liquid Zn-(In, Sn) Alloy Using E.M.F Method (기전력법에 의한 용융 ZR-(In, Sn) 합금의 활동도 측정)

  • Jung Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.47-53
    • /
    • 2005
  • The E.M.F. of the galvanic cell with fused salt was measured to determine the activities of zinc at 720-860 K over the entire composition range of liquid Zn-In and Zn-Sn alloys. The cell used was as follows: $$(-)W{\mid}Zn(pure){\mid}Zn^{2+}(KCl-LiCl){\mid}Zn(in\;Zn-In\;or\;Zn-Sn\;alloy){\mid}W(+)$$ The activities of zinc in the alloys showed positive deviation from Raoult's law over the entire composition range. The activity of cadmium and some thermodynamic functions such as Gibbs free energy, enthalpy and entropy were derived from the results by the thermodynamic relationship. The comparison of the results and the literature data was made. The liquid Zn-In and Zn-Sn alloys are found to be close tn the regular solution. The concentration fluctuations in long wavelength limit, $S_{cc}(o)$, in the liquid alloy were calculated from the experimental results.