DOI QR코드

DOI QR Code

Activity Measurement in Liquid Zn-(In, Sn) Alloy Using E.M.F Method

기전력법에 의한 용융 ZR-(In, Sn) 합금의 활동도 측정

  • Jung Woo-Gwang (School of Advanced Materials Engineering, Kookmin University)
  • 정우광 (국민대학교 공과대학 신소재공학부)
  • Published : 2005.01.01

Abstract

The E.M.F. of the galvanic cell with fused salt was measured to determine the activities of zinc at 720-860 K over the entire composition range of liquid Zn-In and Zn-Sn alloys. The cell used was as follows: $$(-)W{\mid}Zn(pure){\mid}Zn^{2+}(KCl-LiCl){\mid}Zn(in\;Zn-In\;or\;Zn-Sn\;alloy){\mid}W(+)$$ The activities of zinc in the alloys showed positive deviation from Raoult's law over the entire composition range. The activity of cadmium and some thermodynamic functions such as Gibbs free energy, enthalpy and entropy were derived from the results by the thermodynamic relationship. The comparison of the results and the literature data was made. The liquid Zn-In and Zn-Sn alloys are found to be close tn the regular solution. The concentration fluctuations in long wavelength limit, $S_{cc}(o)$, in the liquid alloy were calculated from the experimental results.

Keywords

References

  1. O. kubaschewski, C. B. Alcock and P. J. Spencer, Materials Thermochemistry 6th ed., p. 64, Pergamon Press, Oxford, England, (1993)
  2. F. E. Wittig and E. Muller, Z. Metallkde., 51, 226 (1960)
  3. V. W. Oelsen and P. Zuhlke, Archiv fur das Eisenhuttenwesen, 27, 743 (1956) https://doi.org/10.1002/srin.195602977
  4. O. J. Kleppa, Acta Metallurgica, 6, 225 (1958) https://doi.org/10.1016/0001-6160(58)90141-X
  5. W. J. Svirbely and S. M. Selis, J. Am. Chem. Soc., 75, 1532 (1952) https://doi.org/10.1021/ja01103a005
  6. Z. Moser, Revue Roumaine de Chimie, 16, 327 (1971)
  7. H. Hagiwara, S. Sugino and H. Fujiwara, Bull. Univ. Osaka, 23, 41 (1974)
  8. D. Ferro, B. M. Nappi, V. Piacente and P. L. Cignini, High Temperature Science, 10, 131 (1978)
  9. R. W. Bohl and V. D. Hildebrandt, J. Am. Chem. Soc., 79, 2711 (1957) https://doi.org/10.1021/ja01568a013
  10. Z. Moser, K. Rzyman and S. Randzio, Bull. Pol. Acad. Sci. Ser, Tech. Sci., 35, 461 (1987)
  11. K. Itagaki and A. Yazawa, Nippon Kinzoku Gakkaishi, 39, 880 (1975)
  12. Z. Kozuka and J. Moriyama, Suiyoukaishi, 16, 163 (1967)
  13. W. Ptak, Arch. Hutnictwa., 5, 169 (1960)
  14. K. Okajima and H. Sakao, Nippon Kinzoku Gakkaishi, 31, 1305 (1967)
  15. Z. Moser and W. Gasior, Bull. Pol. Acad. Sci. Ser, Tech. Sci., 31, 19 (1983)
  16. J. Dutkiewicz and W. Zakulski, Bull. Alloy Phase Diagrams, 5, 284 (1984) https://doi.org/10.1007/BF02868554
  17. Z. Moser, J. Dutkiewicz, W. Gasior and J. Salawa, Bull. Alloy Phase Diagrams, 6, 330 (1985) https://doi.org/10.1007/BF02880511
  18. M. Srivastawa and R. C. Sharma, J. Phase Equilibria, 14, 700 (1993) https://doi.org/10.1007/BF02667882
  19. B.-J. Lee, Calphad, 20, 471 (1996) https://doi.org/10.1016/S0364-5916(97)00009-6
  20. S.-Y. Chung, W.-G. Jung and J. J. Park, Kor. J. Mater. Res. Soc., 12, 283 (2002) https://doi.org/10.3740/MRSK.2002.12.4.283
  21. K. Sano, K. Okajima and S. Tatsuo, Mem. Fac. Eng. Nagoya Univ., 5, 299 (1953)
  22. I. Katayama, K. Maki, Y. Fukuda, A. Ebara and T. Iida, Mater. Trans. JIM, 38, 119 (1997) https://doi.org/10.2320/matertrans1989.38.119
  23. Z. Moser, Z. Metallkde, 65, 106 (1974)
  24. R. N. Singh, Can. J. Phys. C: Solid State Phys., 7, 3509 (1974) https://doi.org/10.1088/0022-3719/7/19/011
  25. R. N. Singh and F. Sommer, Z. Metallkde., 83, 533 (1992)
  26. Z. C. Wang, S. K. Yu and F. Sommer, J. Chim. Phys., 90, 379 (1993) https://doi.org/10.1051/jcp/1993900379
  27. F. Sommer and R. N. Singh, Z. Metallkde, 85, 621 (1994)