Browse > Article
http://dx.doi.org/10.3740/MRSK.2005.15.1.047

Activity Measurement in Liquid Zn-(In, Sn) Alloy Using E.M.F Method  

Jung Woo-Gwang (School of Advanced Materials Engineering, Kookmin University)
Publication Information
Korean Journal of Materials Research / v.15, no.1, 2005 , pp. 47-53 More about this Journal
Abstract
The E.M.F. of the galvanic cell with fused salt was measured to determine the activities of zinc at 720-860 K over the entire composition range of liquid Zn-In and Zn-Sn alloys. The cell used was as follows: $$(-)W{\mid}Zn(pure){\mid}Zn^{2+}(KCl-LiCl){\mid}Zn(in\;Zn-In\;or\;Zn-Sn\;alloy){\mid}W(+)$$ The activities of zinc in the alloys showed positive deviation from Raoult's law over the entire composition range. The activity of cadmium and some thermodynamic functions such as Gibbs free energy, enthalpy and entropy were derived from the results by the thermodynamic relationship. The comparison of the results and the literature data was made. The liquid Zn-In and Zn-Sn alloys are found to be close tn the regular solution. The concentration fluctuations in long wavelength limit, $S_{cc}(o)$, in the liquid alloy were calculated from the experimental results.
Keywords
activity; zinc-indium; zinc-tion; electromotive force; fused salt method; thermodynamics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. N. Singh and F. Sommer, Z. Metallkde., 83, 533 (1992)
2 J. Dutkiewicz and W. Zakulski, Bull. Alloy Phase Diagrams, 5, 284 (1984)   DOI
3 Z. Moser, J. Dutkiewicz, W. Gasior and J. Salawa, Bull. Alloy Phase Diagrams, 6, 330 (1985)   DOI
4 M. Srivastawa and R. C. Sharma, J. Phase Equilibria, 14, 700 (1993)   DOI
5 B.-J. Lee, Calphad, 20, 471 (1996)   DOI   ScienceOn
6 S.-Y. Chung, W.-G. Jung and J. J. Park, Kor. J. Mater. Res. Soc., 12, 283 (2002)   DOI
7 K. Sano, K. Okajima and S. Tatsuo, Mem. Fac. Eng. Nagoya Univ., 5, 299 (1953)
8 I. Katayama, K. Maki, Y. Fukuda, A. Ebara and T. Iida, Mater. Trans. JIM, 38, 119 (1997)   DOI
9 Z. Moser, Z. Metallkde, 65, 106 (1974)
10 R. N. Singh, Can. J. Phys. C: Solid State Phys., 7, 3509 (1974)   DOI   ScienceOn
11 Z. C. Wang, S. K. Yu and F. Sommer, J. Chim. Phys., 90, 379 (1993)   DOI
12 F. Sommer and R. N. Singh, Z. Metallkde, 85, 621 (1994)
13 K. Okajima and H. Sakao, Nippon Kinzoku Gakkaishi, 31, 1305 (1967)
14 Z. Moser and W. Gasior, Bull. Pol. Acad. Sci. Ser, Tech. Sci., 31, 19 (1983)
15 O. J. Kleppa, Acta Metallurgica, 6, 225 (1958)   DOI   ScienceOn
16 W. J. Svirbely and S. M. Selis, J. Am. Chem. Soc., 75, 1532 (1952)   DOI
17 R. W. Bohl and V. D. Hildebrandt, J. Am. Chem. Soc., 79, 2711 (1957)   DOI
18 Z. Moser, Revue Roumaine de Chimie, 16, 327 (1971)
19 H. Hagiwara, S. Sugino and H. Fujiwara, Bull. Univ. Osaka, 23, 41 (1974)
20 D. Ferro, B. M. Nappi, V. Piacente and P. L. Cignini, High Temperature Science, 10, 131 (1978)
21 Z. Moser, K. Rzyman and S. Randzio, Bull. Pol. Acad. Sci. Ser, Tech. Sci., 35, 461 (1987)
22 K. Itagaki and A. Yazawa, Nippon Kinzoku Gakkaishi, 39, 880 (1975)
23 Z. Kozuka and J. Moriyama, Suiyoukaishi, 16, 163 (1967)
24 W. Ptak, Arch. Hutnictwa., 5, 169 (1960)
25 V. W. Oelsen and P. Zuhlke, Archiv fur das Eisenhuttenwesen, 27, 743 (1956)   DOI
26 O. kubaschewski, C. B. Alcock and P. J. Spencer, Materials Thermochemistry 6th ed., p. 64, Pergamon Press, Oxford, England, (1993)
27 F. E. Wittig and E. Muller, Z. Metallkde., 51, 226 (1960)