• Title/Summary/Keyword: Cell Capacitance

Search Result 220, Processing Time 0.025 seconds

High Security FeRAM-Based EPC C1G2 UHF (860 MHz-960 MHz) Passive RFID Tag Chip

  • Kang, Hee-Bok;Hong, Suk-Kyoung;Song, Yong-Wook;Sung, Man-Young;Choi, Bok-Gil;Chung, Jin-Yong;Lee, Jong-Wook
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.826-832
    • /
    • 2008
  • The metal-ferroelectric-metal (MFM) capacitor in the ferroelectric random access memory (FeRAM) embedded RFID chip is used in both the memory cell region and the peripheral analog and digital circuit area for capacitance parameter control. The capacitance value of the MFM capacitor is about 30 times larger than that of conventional capacitors, such as the poly-insulator-poly (PIP) capacitor and the metal-insulator-metal (MIM) capacitor. An MFM capacitor directly stacked over the analog and memory circuit region can share the layout area with the circuit region; thus, the chip size can be reduced by about 60%. The energy transformation efficiency using the MFM scheme is higher than that of the PIP scheme in RFID chips. The radio frequency operational signal properties using circuits with MFM capacitors are almost the same as or better than with PIP, MIM, and MOS capacitors. For the default value specification requirement, the default set cell is designed with an additional dummy cell.

  • PDF

Uncertainty and Compensation on the cell for Measurement of the Solid Permittivity Materials (고체 유전율 측정용 cell의 불확도 분석과 보상)

  • Kim, Han-Jun;Kang, Jeon-Hong;Yu, Kwang-Min;Hyun, Lee-Sei;Koo, Kyung-Wan;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.482-483
    • /
    • 2007
  • For measurement of dielectric constants, the commercial parallel plate electrodes system with guard-ring electrode have been widely used up to now. The capacitance derived from the parallel plate electrodes capacitor with guard-ring electrode is calculated by the equation of ($C={\epsilon}\;{\cdot}\;\frac{area\;of\;electrod}{distance\;between\;electrodes}$). Therefore, in parallel plate electrode capacitor, the diameter of the guarded electrode, the gap size between guarded electrode and guard ring, and distance between two active electrode should be measured precisely to calculate dielectric constants from the measured capacitance. Consequently their mechanical measurement uncertainties are directly contributed. Especially the air-gap between the electrodes and dielectric specimen at the system must be existed and the measurement error derived from the air-gap is impossible to evaluate as measurement uncertainties. In this study, we analyze the uncertainty of the commercial dielectric constant test cell using 3 kinds CRMs.

  • PDF

A Study on the Evaluation of Oxidation Resistance of Nitride Films in DRAM Capacitors (DRAM 커패시터의 질화막 내산화성 평가에 관한 연구)

  • Chung, Yeun-Gun;Kang, Seong-Jun;Joung, Yang-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.451-456
    • /
    • 2021
  • In order to improve the cell capacitance and scale down in capacitors of semiconductor memory devices, a stacked ONO structure has been introduced as a dielectric layer and thinning of these layers has been attempted continuously. However, many problems have emerged in the manufacturing process. In this study, L/L LPCVD system was used to suppress the growth of natural oxide film of about 10 Å, which was able to secure the capacitance of 3fF / cell. In addition, we investigated the effect of thinning of the dielectric film on the abnormal oxidation of the nitride film, and proposed a stable process control method for forming the dielectric film to ensure oxidation resistance.

Specific Capacitance Characteristics of Electric Double Layer Capacitors with Phenol Based Activated Carbon Fiber Electrodes and Organic Electrolytes (페놀계 활성탄소섬유 전극과 유기성 전해질을 사용하는 전기이중층 캐패시터의 비축전용량 특성)

  • An, Kay Hyeok;Kim, Jong Huy;Shin, Kyung Hee;Noh, Kun Ae;Kim, Tae Hwan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.822-827
    • /
    • 1999
  • The specific capacitance characteristics which were of the electric double layer capacitors(ELDC) made of phenol based activated carbon fiber(ACF) electrodes and organic electrolytes has been investigated with respect to different specific surface area of electrodes and different kinds of organic electrolytes. Throughout charge-discharge cell tests, it has been found that larger surface area and larger pore diameter of electrodes contribute to increase the specific capacitance. Binary mixture of organic solvent with propylene cabonate(PC) and tetrahydrofuran(THF) for 1 M-$LiClO_4$ electrolyte has a higher specific capacitance than single solvent of PC or mixed solvent with PC and diethyl cabonate(DEC). Also, even though 1 M-tetraethylamonium perchlorate(TEAPC) of organic electrolyte shows higher specific capacitance, it has longer charge time because of its lower ion mobility.

  • PDF

A Study on New High Density DRAM Cell (고밀도 DRAM Cell의 새로운 구조에 관한 연구)

  • Yi, Cheon-Hee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.124-130
    • /
    • 1989
  • For the higher density DRAM'S, innovations in fabrication process and circuit design which have led to dramatic density improvement are discussed from the desinger's perspective. A new dynamic RAM cell called Trench Epitaxial Transistor Cell(TETC) using trench technics and SEG have been developed for use in future megabit DRAMS. Storge electrode with $n^+$-polysilicon and $n^+$-source electrode are self-contacted in TETC. With keeping the storage capacitance large enough to prevent soft errors, the cell size reduced to 30% compare with existing BSE cell by utilizing the vertical capacitor made along the isolation region.

  • PDF

Specific Capacitance Characteristics of Electric Double Layer Capacitors with Phenol Based Activated Carbon Fiber Electrodes and Aqueous Electrolytes (페놀계 활성탄소섬유 전극과 수용성 전해질을 사용하는 전기이중층 캐패시터의 비축전용량 특성)

  • Kim, Jong Huy;An, Kay Hyeok;Shin, Kyung Hee;Ryoo, Min Woong;Kim, Dong Kuk
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.814-821
    • /
    • 1999
  • The specific capacitance characteristics of the electric double layer capacitors(ELDC) which were made of phenol based activated carbon fiber(ACF) electrodes. Also the effect of aqueous electrolytes on the cell performance has been investigated with respect to different specific surface areas of electrodes and different kinds of aqueous electrolytes. It has been shown that larger surface area and pore size, higher conductivity of electrodes, and higher ion mobility of electrolytes have better specific capacitances. It has been found that heat treatment at $1200^{\circ}C$ and $CO_2$ post-activation at $900^{\circ}C$ of the electrode are effective to improve the specific capacitance over 145F/g and 165F/g, respectively. The EDLC showed high efficiency and long cycle life over 30000 cycles.

  • PDF

The Development of Pulverized Coal(PC) Flow-Meter using Capacitance (정전용량을 이용한 미분탄 유량계의 개발)

  • Gim, Jae-Hyeon;Lee, Yong-Sik;Hwang, Keon-Ho;Jeong, Sung-Won;Yeo, Jun-Ho;So, Ji-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.61-67
    • /
    • 2008
  • In this papar, the flow meter system for pulverized coal is developed for the pulverizer-burner system of the boiler or the blast furnace. The sensor of the system a lied the capacitance with a pair of electrode on the outer wall of the electric insulator pipe. The circuit is designed for the measurement of the granule flow density combining as a measuring electrode and a reference. In order to measure granule-flow density, the calibration curve between the weight measured from loadcell and the voltage from the circuit is created. It is verified that the flow meter system has reliability and accuracy using on-line test.

Improvement of Electrochemical Characteristics and Study of Deterioration of Aluminum Foil in Organic Electrolytes for EDLC

  • Lee, Mun-Soo;Kim, Donna H.;Kim, Seung-Cheon
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.9-19
    • /
    • 2018
  • The anodic behavior of aluminum (Al) foils with varying purity, capacitance, and withstand voltage in organic electrolytes was examined for EDLC. The results of cyclic voltammetry (CV) and chronoamperometry (CA) experiments showed that the electrochemical stability improves when Al foil has higher purity, lower capacitance, and higher withstand voltage. To improve the electrochemical stability of EDLC current collectors made of low-purity foil (99.4% Al foil), the foil was modified by chemical etching to reduce its capacitance to $60{\mu}F/cm^2$ and forming to have withstand a voltage of 3 Vf. EDLC cells using the modified Al foil as a current collector were made to 2.7 V with 360 F, and a constant voltage load test was subsequently performed for 2500 hours at high temperature under a rated voltage of 2.7 V. The reliability and stability of the EDLC cell improved when the modified Al foil was used as a current collector. To understand the deterioration process of the Al current collector, standard cells made of conventional Al foil under a constant voltage load test were disassembled, and the surface changes of the foil were measured every 500 hours. The Al foil became increasingly corroded, causing the adhesion between the AC coating layer and the Al foil to weaken, and it was confirmed that partial AC coating layer peeling occurred.

Preparation and Characteristics of Li4Ti5O12 Anode Material for Hybrid Supercapacitor

  • Lee, Byung-Gwan;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.207-211
    • /
    • 2012
  • Spinel-$Li_4Ti_5O_{12}$ was successfully synthesized by a solid-phase method at 800, 850, and $900^{\circ}C$ according to the $Li_4Ti_5O_{12}$ cubic spinel phase structure. To achieve higher EDLC energy density with the $Li_4Ti_5O_{12}$, the negative electrode of the hybrid supercapacitor was studied in this work. The electrochemical performances of the hybrid supercapacitor and EDLC were characterized by constant current discharge curves, c-rate, and cycle performance testing. The capacitance (1st cycle) of the hybrid supercapacitor and EDLC was 209 and 109 F, respectively, which is higher than EDLC. The capacitance of the hybrid supercapacitor decreases from 209 F to 101 F after 20 cycles when discharged at several specific current densities ranging from 1 to 10 A. In contrast, capacitance of the EDLC hardly decreases after 20 cycles. Results show that hybrid supercapacitor benefits from the high rate capability of supercapacitor and high capacity of the battery. Findings also prove that the hybrid supercapacitor is an energy storage device where the supercapacitor and the Li ion secondary battery coexist in one cell system.

Analysis of Bulk Concentration on Double-Layer Structure for Electrochemical Capacitors

  • Khaing, Khaing Nee Nee;Hla, Tin Tin
    • Korean Journal of Materials Research
    • /
    • v.32 no.7
    • /
    • pp.313-319
    • /
    • 2022
  • Double-layer capacitors (DLCs) are developed with high surface electrodes to achieve a high capacitance value. In the present work, the initial bulk concentration of 1 mol/m3 and 3 mol /m3 are selected to show the consequential effects on the performance of a double-layer capacitor. A 1D model of COMSOL Multiphysics has been developed to analyze the electric field and potential in cell voltage, the electric displacement field and polarization induced by the field, and energy density in a double-layer structure. The electrostatics and the electric circuit modes in COMSOL are used to simulate the electrochemical processes in the double-layer structure. The analytical analysis of a double-layer capacitor with different initial bulk concentrations is investigated by using Poisson-Nernst-Plank equations. From the simulation results, the differential capacitance changes as a function of compact layer thickness and initial bulk concentration. The energy density varies with the differential capacitance and voltage window. The values of energy density are dominated by the interaction of ions in the solution and electrode surface.