Browse > Article
http://dx.doi.org/10.5370/JEET.2012.7.2.207

Preparation and Characteristics of Li4Ti5O12 Anode Material for Hybrid Supercapacitor  

Lee, Byung-Gwan (SAMWHA CAPACITOR)
Yoon, Jung-Rag (SAMWHA CAPACITOR)
Publication Information
Journal of Electrical Engineering and Technology / v.7, no.2, 2012 , pp. 207-211 More about this Journal
Abstract
Spinel-$Li_4Ti_5O_{12}$ was successfully synthesized by a solid-phase method at 800, 850, and $900^{\circ}C$ according to the $Li_4Ti_5O_{12}$ cubic spinel phase structure. To achieve higher EDLC energy density with the $Li_4Ti_5O_{12}$, the negative electrode of the hybrid supercapacitor was studied in this work. The electrochemical performances of the hybrid supercapacitor and EDLC were characterized by constant current discharge curves, c-rate, and cycle performance testing. The capacitance (1st cycle) of the hybrid supercapacitor and EDLC was 209 and 109 F, respectively, which is higher than EDLC. The capacitance of the hybrid supercapacitor decreases from 209 F to 101 F after 20 cycles when discharged at several specific current densities ranging from 1 to 10 A. In contrast, capacitance of the EDLC hardly decreases after 20 cycles. Results show that hybrid supercapacitor benefits from the high rate capability of supercapacitor and high capacity of the battery. Findings also prove that the hybrid supercapacitor is an energy storage device where the supercapacitor and the Li ion secondary battery coexist in one cell system.
Keywords
$Li_4Ti_5O_{12}$; LTO; Lithium titanate; Hybrid supercapacitor; Hybrid capacitor;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 J. Li, Y. L. Jin, X. G. Zhang, H. Yang, Solid State Ionics, vol. 178, pp. 1590-1594, 2007.   DOI   ScienceOn
2 K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, J. Power Sources, vol. 81-82, pp 300-305, 1999.   DOI   ScienceOn
3 M. S. Hong, S. H. Lee, S. W. Kim, Electrochem. Solid St. vol. 5, pp. A227-A230, 2002.   DOI   ScienceOn
4 E. M. Sorensen, S. J. Barry, H. K. Jung, J. R. Rondinelli, J. T. Vaughey, K. R. Poeppelmeier, Chem. Mater. Vol. 18, pp. 482-489, 2006.   DOI   ScienceOn
5 S. Y. Yina, L. Songb, X. Y. Wanga, M. F. Zhanga, K. L. Zhanga,c, Y. X. Zhanga, Electrochimica Acta, vol. 54, pp. 5629-5633, 2009.   DOI   ScienceOn
6 J. R. Yoon, K. M. Lee, and S. W. Lee, Trans. EEM 10 (1) 5, pp. 5-8, 2009.
7 Y. J. Lee, S. Y. Park, J. G. Seo, J. R. Yoon, J. H. Yi, I. K. Song, Curr. App. Phys. vol. 11, pp. 631-635, 2011.   DOI   ScienceOn
8 Y. F. Tang, L. Yang, Z. Qiu, J. S. Huang, Electrochem. Commun. Vol. 10, pp. 1513-1516, 2008.   DOI   ScienceOn
9 T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc. vol. 142, pp. 1431-1435, 1995.   DOI   ScienceOn
10 K. Zaghib, M. Armand, M. Gauthier, J. Electrochem. Soc. vol. 145, pp. 3135, 1998.   DOI   ScienceOn
11 K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, J. Power Sources, vol. 81-82, pp. 300-305, 1999.   DOI   ScienceOn
12 M. Venkateswarlu, C. H. Chen, J. S. Do, C. W. Lin, T. C. Chou, B. J. Hwang, J. Power Sources, vol. 146, pp. 204-208, 2005.   DOI   ScienceOn
13 J. Gao, C. Y. Jiang, J. R. Ying, C. R. Wan, J. Power Sources, vol. 155, pp. 364-367, 2006.   DOI   ScienceOn
14 Y. Bai, F. Wang, F. Wu, C. Wu, L. Y. Bao, Electrochim. Acta, vol. 54, pp. 322-327, 2008.   DOI   ScienceOn
15 Y. J. Hao, Q. Y. Lai, J. Z. Lu, H. L. Wang, Y. D. Chen, X. Y. Ji, J. Power Sources, vol. 158, pp. 1358-1364, 2006.   DOI   ScienceOn
16 J. R. Li, Z. L. Tang, Z. T. Zhang, Electrochem. Commun. Vol. 7, pp, 894, 2005.   DOI   ScienceOn
17 D. Takayuki, I. Yasutoshi, A. Takeshi, O. Zempachi, Chem. Mater. vol. 17, pp. 1580-1582, 2005.   DOI   ScienceOn