• 제목/요약/키워드: Cauchy kernel

검색결과 22건 처리시간 0.022초

INTEGRAL EQUATIONS WITH CAUCHY KERNEL IN THE CONTACT PROBLEM

  • Abdou, M.A.
    • Journal of applied mathematics & informatics
    • /
    • 제7권3호
    • /
    • pp.895-904
    • /
    • 2000
  • The contact problem of two elastic bodies of arbitrary shape with a general kernel form, investigated from Hertz problem, is reduced to an integral equation of the second kind with Cauchy kernel. A numerical method is adapted to determine the unknown potential function between the two surfaces under certain conditions. Many cases are derived and discussed from the work.

극치값 추정에 적합한 비매개변수적 핵함수 개발 (A Development of Noparamtric Kernel Function Suitable for Extreme Value)

  • 차영일;김순범;문영일
    • 한국수자원학회논문집
    • /
    • 제39권6호
    • /
    • pp.495-502
    • /
    • 2006
  • 비매개변수적 빈도해석을 위해 제시되는 핵밀도함수 방법에서 내삽법은 외삽법보다 더 신뢰적이기 때문에 내삽법과 관련된 광역폭의 선택이 외삽 문제와 연관되는 핵함수의 선택보다 중요하다. 그러나, 재현기간이 자료구간보다 커지거나 또는 $200{\sim}500$년 빈도 발생과 같은 확률 값에 대한 추정을 하는 경우는 자료의 외삽이 중요한 문제이며 따라서 이에 따른 핵함수의 선택도 중요시된다. 핵함수에 따라서는 외삽에 대해 상대적으로 작거나 큰 값이 제시 될 수 있으므로 극치값 추정에는 어려운 점이 있다. 따라서 본 논문에서는 일반적으로 내삽 및 외삽에도 적합한 핵함수로 Modified Cauchy 핵함수를 제시하였다.

THE ITERATED PROJECTION METHOD FOR INTEGRO-DIFFERENTIAL EQUATIONS WITH CAUCHY KERNEL

  • Mennouni, Abdelaziz
    • Journal of applied mathematics & informatics
    • /
    • 제31권5_6호
    • /
    • pp.661-667
    • /
    • 2013
  • In this paper we propose the iterated projection method for the approximate solution of an integro-differential equations with Cauchy kernel in $L^2([-1,1],\mathbb{C})$ using Legendre polynomials. We prove the convergence of the method. A system of linear equations is to be solved. Numerical examples illustrate the theoretical results.

BOOLEAN MULTIPLICATIVE CONVOLUTION AND CAUCHY-STIELTJES KERNEL FAMILIES

  • Fakhfakh, Raouf
    • 대한수학회보
    • /
    • 제58권2호
    • /
    • pp.515-526
    • /
    • 2021
  • Denote by ��+ the set of probability measures supported on ℝ+. Suppose V�� is the variance function of the Cauchy-Stieltjes Kernel (CSK) family ��-(��) generated by a non degenerate probability measure �� ∈ ��+. We determine the formula for variance function under boolean multiplicative convolution power. This formula is used to identify the relation between variance functions under the map ${\nu}{\mapsto}{\mathbb{M}}_t({\nu})=({\nu}^{{\boxtimes}(t+1)})^{{\uplus}{\frac{1}{t+1}}}$ from ��+ onto itself.

INTEGRAL KERNEL OPERATORS ON REGULAR GENERALIZED WHITE NOISE FUNCTIONS

  • Ji, Un-Cig
    • 대한수학회보
    • /
    • 제37권3호
    • /
    • pp.601-618
    • /
    • 2000
  • Let (and $g^*$) be the space of regular test (and generalized, resp.) white noise functions. The integral kernel operators acting on and transformation groups of operators on are studied, and then every integral kernel operator acting on can be extended to continuous linear operator on $g^*$. The existence and uniqueness of solutions of Cauchy problems associated with certain integral kernel operators with intial data in $g^*$ are investigated.

  • PDF

저매개변수 요소를 사용한 2차원 선형탄성 직접 경계요소법의 Kernel 적분법 (Kernel Integration Scheme for 2D Linear Elastic Direct Boundary Element Method Using the Subparametric Element)

  • 조준형;박영목;우광성
    • 한국전산구조공학회논문집
    • /
    • 제25권5호
    • /
    • pp.413-420
    • /
    • 2012
  • 본 논문은 2차원 선형탄성 직접 경계요소법에서 저매개변수 요소를 사용할 때 Kernel의 적분방법에 대하여 논의하였다. 일반적으로 등매개변수 요소의 경우 형상함수로 통칭되는 해의 기저함수와 요소의 적분을 위해 사용되는 사상함수를 동일하게 사용한다. 그러나 본 논문에서는 사상함수의 차수를 낮게 취하여 순수기저절점을 도입하고 그때 직접 경계요소의 Kernel을 적분하기 위한 방법이 모색되었다. 일반적으로 경계요소법의 적분 Kernel의 경우 Log수치적분과 코쉬주치(Cauchy principal value) 등을 통해 해결하는데, 본 논문에서는 대수적 조작을 통해 적분값의 정확도를 높일 수 있도록 새로운 수식을 유도하였다. 본 연구에서 저매개변수 기반의 직접 경계요소에 대한 강건성과 정확도를 검증하기 위해 2차원 타원형 편미분방정식으로 표현되는 평면응력과 평면변형문제에 대해 적용하였다. 적용 예제로는 단순연결영역(simple connected region)의 대표적 문제인 캔틸레버보와 다중연결영역(multiple connected region)의 대표적인 문제인 개구부가 있는 사각평면에 대해 각각 수치해석을 수행한 결과 대폭적인 자유도의 감소에 비해 정확도 측면에는 기존의 방법과 차이가 없음을 볼 수 있었다. 본 논문에서 제시된 방법은 기저함수 고차화 저매개변수 직접 경계요소법(subparametric high order boundary element)과 이에 기초를 둔 저매개변수 고차 이중경계요소법(subparametric high order dual boundary element)의 초석이 될 수 있을 것이다.

STABILITY OF FUNCTIONAL EQUATIONS WITH RESPECT TO BOUNDED DISTRIBUTIONS

  • Chung, Jae-Young
    • 충청수학회지
    • /
    • 제21권3호
    • /
    • pp.361-370
    • /
    • 2008
  • We consider the Hyers-Ulam type stability of the Cauchy, Jensen, Pexider, Pexider-Jensen differences: $$(0.1){\hspace{55}}C(u):=u{\circ}A-u{\circ}P_1-u{\circ}P_2,\\(0.2){\hspace{55}}J(u):=2u{\circ}\frac{A}{2}-u{\circ}P_1-u{\circ}P_2,\\(0.3){\hspace{18}}P(u,v,w):=u{\circ}A-v{\circ}P_1-w{\circ}P_2,\\(0.4)\;JP(u,v,w):=2u{\circ}\frac{A}{2}-v{\circ}P_1-w{\circ}P_2$$, with respect to bounded distributions.

  • PDF

THE STUDY OF FLOOD FREQUENCY ESTIMATES USING CAUCHY VARIABLE KERNEL

  • Moon, Young-Il;Cha, Young-Il;Ashish Sharma
    • Water Engineering Research
    • /
    • 제2권1호
    • /
    • pp.1-10
    • /
    • 2001
  • The frequency analyses for the precipitation data in Korea were performed. We used daily maximum series, monthly maximum series, and annual series. For nonparametric frequency analyses, variable kernel estimators were used. Nonparametric methods do not require assumptions about the underlying populations from which the data are obtained. Therefore, they are better suited for multimodal distributions with the advantage of not requiring a distributional assumption. In order to compare their performance with parametric distributions, we considered several probability density functions. They are Gamma, Gumbel, Log-normal, Log-Pearson type III, Exponential, Generalized logistic, Generalized Pareto, and Wakeby distributions. The variable kernel estimates are comparable and are in the middle of the range of the parametric estimates. The variable kernel estimates show a very small probability in extrapolation beyond the largest observed data in the sample. However, the log-variable kernel estimates remedied these defects with the log-transformed data.

  • PDF

A CHARACTERIZATION OF SOBOLEV SPACES BY SOLUTIONS OF HEAT EQUATION AND A STABILITY PROBLEM FOR A FUNCTIONAL EQUATION

  • Chung, Yun-Sung;Lee, Young-Su;Kwon, Deok-Yong;Chung, Soon-Yeong
    • 대한수학회논문집
    • /
    • 제23권3호
    • /
    • pp.401-411
    • /
    • 2008
  • In this paper, we characterize Sobolev spaces $H^s(\mathbb{R}^n),\;s{\in}\mathbb{R}$ by the initial value of solutions of heat equation with a growth condition. By using an idea in its proof, we also discuss a stability problem for Cauchy functional equation in the Sobolev spaces.