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THE ITERATED PROJECTION METHOD FOR

INTEGRO-DIFFERENTIAL EQUATIONS WITH CAUCHY

KERNEL

ABDELAZIZ MENNOUNI

Abstract. In this paper we propose the iterated projection method for
the approximate solution of an integro-differential equations with Cauchy

kernel in L2([−1, 1],C) using Legendre polynomials. We prove the con-
vergence of the method. A system of linear equations is to be solved.
Numerical examples illustrate the theoretical results.

AMS Mathematics Subject Classification : 45E05, 35J15.

Key words and phrases : Cauchy kernel, integro-differential equations,
projection method.

1. Introduction

Many problems of mathematical physics such as unsteady aerodynamics and
aero elastic phenomena, visco-elasticity, fluid dynamics, electrodynamics lead to
a integro-differential equations with Cauchy kernel. Many integro-differential
equations need to be solved numerically. Several authors have been studied
projection approximations for solving integral equations with different numeri-
cal procedures, the theory of projection approximations is developed in [3]. In
[10], the authors have discussed the superconvergence of the Galerkin iterates
for integral equations of the second kind. In [6], we have studied projection ap-
proximations for solving Cauchy integro-differential equations using airfoil poly-
nomials of the first kind. In [7], we have applied the successive approximation
method, for solving a Cauchy singular integral equations of the first kind in the
general case. In [5], we have introduced a new projection method, for solving
integro-differential equations with Cauchy kernel. In the same perspective, we
introduce a new application of the iterated projection method. The purpose of
the present method is to approximate the solution of integro-differential equa-
tions with Cauchy Kernel using the iterated projection.
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2. Main results

Let the universe of our discours be the Hilbert space H := L2([−1, 1] ,C). Set

D := {φ ∈ H : φ′ ∈ H, φ(−1) = 0} ,
and consider the integro-differential equation with Cauchy kernel

φ′(s) +

∮ 1

−1

φ(t)

t− s
dt = f(s), −1 ≤ s ≤ 1, (1)

where the integral is understood as the Cauchy principal value:∮ 1

−1

φ(t)

t− s
dt = lim

ϵ→0

(∫ s−ϵ

−1

x(t)

t− s
dt+

∫ 1

s+ϵ

x(t)

t− s
dt

)
.

Letting

Tx(s) :=

∮ 1

−1

x(t)

t− s
dt, x ∈ H, −1 ≤ s ≤ 1,

Ax(s) := x′(s), x ∈ D, −1 ≤ s ≤ 1,

the operator T is bounded from H into itself and

A−1y(s) =

∫ s

−1

y(t)dt, y ∈ H, −1 ≤ s ≤ 1,

is compact (cf.[4]). Equation (1) can be rewritten as

φ+A−1Tφ = A−1f.

Let

K := A−1T,

since A−1 is compact and T is bounded, the operator K is compact from H
into itself. We assume that −1 is not an eigenvalue of K, and consider the
approximate problem of finding φn ∈ H such that

φn +Kπnφn = A−1f. (2)

Clearly, if such a function exists, it belongs to D. Let (Ln)n≥0 be the sequence
of Legendre polynomials and

ej :=

√
2j + 1

2
Lj ,

the corresponding normalized sequence. We consider the sequence of finite rank
orthogonal projections (πn)n≥1 defined by

πnx :=
n−1∑
j=0

⟨x, ej⟩ ej .

Applying the operator πn to both sides of equation (2) we get

πnφn + πnKπnφn = πnA
−1f,
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or, equivalently,

n−1∑
j=0

⟨φn, ej⟩ ej +
n−1∑
j=0

⟨φn, ej⟩πnKej =
n−1∑
j=0

⟨
A−1f, ej

⟩
ej ,

and performing the inner product with ei we get the following system:

⟨φn, ei⟩+
n−1∑
j=0

⟨φn, ej⟩ ⟨πnKej , ei⟩ =
⟨
A−1f, ei

⟩
, i ∈ [[0, n− 1 ]].

Since π∗
n = πn, and πnei = ei,

⟨φn, ei⟩+
n−1∑
j=0

⟨φn, ej⟩ ⟨Kej , ei⟩ =
⟨
A−1f, ei

⟩
, i ∈ [[0, n− 1 ]].

Thus

(In +An)xn = bn, (3)

where xn(j) := ⟨φn, ej⟩, and

An(i, j) :=

√
2j + 1

2

√
2i+ 1

2

∫ 1

−1

∫ s

−1

∮ 1

−1

Lj(τ)Li(s)

τ − t
dτdtds,

bn(i) :=

√
2i+ 1

2

∫ 1

−1

∫ s

−1

f(t)Li(s)dtds.

Since K is compact, (In + An)
−1 exists for n large enough (see [3]). Once the

system (3) is solved, φn is recovered as

φn(s) =

∫ s

−1

f(t)dt−
n−1∑
j=0

xn(j)

√
2j + 1

2

∫ s

−1

∮ 1

−1

Lj(τ)

τ − t
dτdt.

Let s > 0 and Hs([−1, 1],C) be the classical Sobolev space, and let ∥.∥s denote
its norm. (For details, see [2].) Remark that

(I +A−1T )(Hs([−1, 1],C)) = Hs([−1, 1],C).

We recall that (cf. [2]) there exists c > 0 such that, for all ψ ∈ Hs([−1, 1],C),

∥(I − πn)ψ∥ ≤ cn−s∥ψ∥s. (4)

Let

M := sup
n≥N

∥∥(I +Kπn)
−1

∥∥ ,
which is finite.

Theorem 2.1. Assume that f ∈ Hs([−1, 1],C) for some s > 0. Then, there
exists β > 0 such that

∥φS
n − φ∥ ≤Mβ ∥K∥n−s∥φ∥s.
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Table 1. Absolute error for Example 1

n
∥∥φS

n − φ
∥∥

2 2.03e-1
4 2.15e-2
6 2.59e-3
8 3.44e-4
10 4.81e-5
12 6.98e-6
14 1.03e-6
16 1.57e-7

Proof. We have

φS
n − φ =

(
A−1f −Kπnφ

S
n

)
−
(
A−1f −Kφ

)
= K (I − πn)φ+Kπn

(
φ− φS

n

)
,

and hence (
φS
n − φ

)
= (I +Kπn)

−1
K (I − πn)φ.

But f ∈ Hs([−1, 1],C), so φ ∈ Hs([−1, 1],C). Using (4), the desired result
follows. �

3. Numerical Examples

In this section, we present two numerical examples to illustrate the theoretical
results obtained in the above section. Tables 1 and 2 show the absolute error
as a function of n. We applied our method to solve (1) numerically. Once the
system (3) is solved, we obtain the numerical results.

Example 1. We consider the integro-differential equation (1) with f such that

f(s) =− πs3 + (2− π)s2 + (4 + π)s− 2− π

2(s2 + 1)2

− (2s3 + 2s2 + 2x+ 2)

(s2 + 1)2
ln(s+ 1)

+
2s3 + 2s2 + 2s+ 2

(s2 + 1)2
ln(1− s).

The exact solution be

φ(s) =
s+ 1

s2 + 1
.
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Table 2. Absolute error for Example 2

n
∥∥φS

n − φ
∥∥

6 8.11e-1
8 2.70e-1
10 7.94e-2
12 2.14e-2
14 5.07e-3
16 9.94e-4
18 1.16e-4
20 2.56e-5
22 3.96e-6
24 5.85e-7

Example 2. In this example we consider the integro-differential equation (1)
with f such that

f(s) = p(s)−
(
s30 + 6s25 + 15s20 + 20s15 + 15s10 + 6s5 + 1

)
ln(s+ 1)

+ 64 ln(1− s) + 960 ln |s| ,

where p(s) is a known polynomial of degree 29.
The exact solution be

φ(s) =
(
s5 + 1

)6
.

Example 3. Here we review the first example given in [6]. Let us consider the
following integro-differential equation

φ′(s) +
1

π5

∮ 1

−1

φ(t)

t− s
dt =

2(1 + π5)s

π5
+

(s2 − 1)

π5
ln

(
1− s

1 + s

)
The exact solution is

φ(s) = s2 − 1.

Table (3) gives the numerical results for Example 3.

Example 4. We review the second example given in [6]. We consider the fol-
lowing integro-differential equation

φ′(s) +

∮ 1

−1

φ(t)

t− s
dt =

7

3
− 5s2 + (s− s3) ln

(
1− s

1 + s

)
The exact solution for this equation is

φ(s) = −s3 + s.

Table (4) gives the numerical results for Example 4.
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Table 3. Absolute error for Example 3

n
∥∥φS

n − φ
∥∥

3 2.07e-1
5 2.16e-2
7 2.63e-3
9 3.15e-4
11 4.56e-5
13 6.77e-6

Table 4. Absolute error for Example 4

n
∥∥φS

n − φ
∥∥

5 8.27e-1
7 2.36e-1
9 7.88e-2
13 2.09e-2
15 5.23e-3
17 9.89e-4
19 1.09e-4

4. Conclusions

Several projection methods have been studied extensively in the literature for
approximating the solution of integral equations. In [9], the authors have pre-
sented a new approach to the numerical solution of integral equations. In [10],
the authors have discussed the superconvergence of the Galerkin iterates for in-
tegral equations of the second kind. This work extends the application of the
iterated projection method to singular integro-differential equations of Cauchy
type. The present projection approximations based on Legendre polynomials.
We have shown the convergence of the approximate solution to the exact solu-
tion in the Sobolev spaces. Numerical experiments show the pertinence of our
method. The proposed method can be used to solve other class of integral and
integro-differential equations.
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