• Title/Summary/Keyword: CVD-graphene

Search Result 143, Processing Time 0.035 seconds

Vertically Standing Graphene on Glass Substrate by PECVD

  • Ma, Yifei;Hwang, Wontae;Jang, Haegyu;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.232.2-232.2
    • /
    • 2014
  • Since its discovery in 2004, graphene, a sp2-hybridized 2-Dimension carbon material, has drawn enormous attention. A variety of approaches have been attempted, such as epitaxial growth from silicon carbide, chemical reduction of graphene oxide and CVD. Among these approaches, the CVD process takes great attention due to its guarantee of high quality and large scale with high yield on various transition metals. After synthesis of graphene on metal substrate, the subsequent transfer process is needed to transfer graphene onto various target substrates, such as bubbling transfer, renewable epoxy transfer and wet etching transfer. However, those transfer processes are hard to control and inevitably induce defects to graphene film. Especially for wet etching transfer, the metal substrate is totally etched away, which is horrendous resources wasting, time consuming, and unsuitable for industry production. Thus, our group develops one-step process to directly grow graphene on glass substrate in plasma enhanced chemical vapor deposition (PECVD). Copper foil is used as catalyst to enhance the growth of graphene, as well as a temperature shield to provide relatively low temperature to glass substrate. The effect of growth time is reported that longer growth time will provide lower sheet resistance and higher VSG flakes. The VSG with conductivity of $800{\Omega}/sq$ and thickness of 270 nm grown on glass substrate can be obtained under 12 min growing time. The morphology is clearly showed by SEM image and Raman spectra that VSG film is composed of base layer of amorphous carbon and vertically arranged graphene flakes.

  • PDF

Effects of Residual PMMA on Graphene Field-Effect Transistor

  • Jung, J.H.;Kim, D.J.;Sohn, I.Y.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.561-561
    • /
    • 2012
  • Graphene, two dimensional single layer of carbon atoms, has tremendous attention due to its superior property such as fast electron mobility, high thermal conductivity and optical transparency, and also found many applications such as field-effect transistors (FET), energy storage and conversion, optoelectronic device, electromechanical resonators and chemical sensors. Several techniques have been developed to form the graphene. Especially chemical vapor deposition (CVD) is a promising process for the large area graphene. For the electrically isolated devices, the graphene should be transfer to insulated substrate from Cu or Ni. However, transferred graphene has serious drawback due to remaining polymeric residue during transfer process which induces the poor device characteristics by impurity scattering and it interrupts the surface functionalization for the sensor application. In this study, we demonstrate the characteristics of solution-gated FET depending on the removal of polymeric residues. The solution-gated FET is operated by the modulation of the channel conductance by applying a gate potential from a reference electrode via the electrolyte, and it can be used as a chemical sensor. The removal process was achieved by several solvents during the transfer of CVD graphene from a copper foil to a substrate and additional annealing process with H2/Ar environments was carried out. We compare the properties of graphene by Raman spectroscopy, atomic force microscopy(AFM), and X-ray Photoelectron Spectroscopy (XPS) measurements. Effects of residual polymeric materials on the device performance of graphene FET will be discussed in detail.

  • PDF

Study on Graphene Thin Films Grown on Single Crystal Sapphire Substrates Without a Catalytic Metal Using Pulsed Laser Deposition

  • Na, Byoung Jin;Kim, Tae Hwa;Lee, Cheon;Lee, Seok-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.70-73
    • /
    • 2015
  • Many studies have used chemical vapor deposition (CVD) to grow graphene. However, CVD is inefficient in terms of production costs, and inefficient for mass production because a transfer process using a catalytic metal is needed. In this study, graphene thin films were grown on single crystal sapphire substrates without a catalytic metal, using pulsed laser deposition (PLD) to resolve these problems. In addition, the growth of graphene using PLD was confirmed to have a close relationship with the substrate temperature.

Direct synthesis of Graphene/Boron nitride stacked layer by CVD on Cu foil

  • Moon, Youngwoong;Park, Jonghyun;Park, Sijin;Kim, Hyungjun;Hwang, Chanyong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.344.1-344.1
    • /
    • 2016
  • Recently, graphene has shown great characteristic of electrical conductivity, strength, and elasticity. However, due to edge unstable and metallic properties, it is difficult to use as a semiconductor devices. The solution of such problems has been sought a way to use the boron nitride in a stacked layer structure. By graphene and boron nitride stacked layer structure on silicon substrate, the electron mobility is improved and deteriorated results in semiconductor properties. In this study, to make layered structure, we developed direct synthesis method for graphene on boron nitride. By using Raman technique, the directly stacked layer structure is in good agreement with measurements on each of the attributes.

  • PDF

Graphene Synthesis by Low Temperature Chemical Vapor Deposition and Rapid Thermal Anneal (저온 화학기상증착법 및 급속가열 공정을 이용한 그래핀의 합성)

  • Lim, Sung-Kyu;Mun, Jeong-Hun;Lee, Hi-Deok;Yoo, Jung-Ho;Yang, Jun-Mo;Wang, Jin-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1095-1099
    • /
    • 2009
  • As a substitute material for silicon, we synthesized few layer graphene (FLG) by CVD process with a 300-nm-thick nickel film deposited on the silicon substrate and found out the lowest temperature for graphene synthesis. Raman spectroscopy study showed that the D peak (wave length : ${\sim}1,350\;cm^{-1}$) of graphene was minimized and then the 2D one (wave length : ${sim}2,700\;cm^{-1}$) appeared when rapid thermal anneal is carried out with the $C_2H_2$ treated nickel film. This study demonstrates that a high quality FLG formed at a low temperature of $400^{\circ}C$ is applicable as CMOS devices and transparent electrode materials.

Graphene Transistor Modeling Using MOS Model (MOS 모델을 이용한 그래핀 트랜지스터 모델링)

  • Lim, Eun-Jae;Kim, Hyeongkeun;Yang, Woo Seok;Yoo, Chan-Sei
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.837-840
    • /
    • 2015
  • Graphene is a single layer of carbon material which shows very high electron mobility, so many kinds of research on the devices using graphene layer have been performed so far. Graphene material is adequate for high frequency and fast operation devices due to its higher mobility. In this research, the actual graphene layer is evaluated using RT-CVD method which can be available for mass production. The mobility of $7,800cm^2/Vs$ was extracted, that is more than 7 times of that in silicon substrate. The graphene transistor model having no band gap is evaluated using both of pMOS and nMOS based on the measured mobility values. And then the response of graphene transistor model regarding to gate length and width is examined.

In-situ magnetization measurements and ex-situ morphological analysis of electrodeposited cobalt onto chemical vapor deposition graphene/SiO2/Si

  • Franco, Vinicius C. De;Castro, Gustavo M.B.;Corredor, Jeaneth;Mendes, Daniel;Schmidt, Joao E.
    • Carbon letters
    • /
    • v.21
    • /
    • pp.16-22
    • /
    • 2017
  • Cobalt was electrodeposited onto chemical vapor deposition (CVD) graphene/Si/$SiO_2$ substrates, during different time intervals, using an electrolyte solution containing a low concentration of cobalt sulfate. The intention was to investigate the details of the deposition process (and the dissolution process) and the resulting magnetic properties of the Co deposits on graphene. During and after electrodeposition, in-situ magnetic measurements were performed using an (AGFM). These were followed by ex situ morphological analysis of the samples with ${\Delta}t_{DEP}$ 30 and 100 s by atomic force microscopy in the non-contact mode on pristine CVD graphene/$SiO_2$/Si. We demonstrate that it is possible to electrodeposit Co onto graphene, and that in-situ magnetic measurements can also help in understanding details of the deposition process itself. The results show that the Co deposits are ferromagnetic with decreasing coercivity ($H_C$) and demonstrate increasing magnetization on saturation ($M_{SAT}$) and electric signal proportional to remanence ($M_r$), as a function of the amount of the electrodeposited Co. It was also found that, after the end of the dissolution process, a certain amount of cobalt remains on the graphene in oxide form (this was confirmed by X-ray photoelectron spectroscopy), as suggested by the magnetic measurements. This oxide tends to exhibit a limited asymptotic amount when cycling through the deposition/dissolution process for increasing deposition times, possibly indicating that the oxidation process is similar to the graphene surface chemistry.

Improvement of PDMS graphene transfer method through surface modification of target substrate (폴리디메틸실록산(PDMS)을 이용한 그래핀 전사법 개선을 위한 계면처리 연구)

  • Han, Jae-Hyung;Choi, Mu-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.232-239
    • /
    • 2015
  • In this paper, we study the dry transfer technology utilizing PDMS (Polydimethylsiloxane) stamp of a large single-layer graphene grown on Cu-foil as catalytic metal by using Chemical Vapor Deposition (CVD). By changing the surface property of the target substrate through $UV/O_3$ treatment, we can transfer the graphene on the target substrate while minimizing mechanical damages of graphene layer. Multi-layer (1~4 layers) graphene was stacked on $SiO_2/Si$ wafer successfully by repeating thetransfer method/process and then optical transmittance and sheet resistance of graphene layers have been measured as a quality assessment.

Movement of graphene grain boundary and its interaction with defects during graphene growth (그래핀 결정입계의 이동 및 결함과의 상호작용)

  • Hwang, Suk-Seung;Choi, Byung-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.3
    • /
    • pp.273-278
    • /
    • 2014
  • On poly and single crystalline Cu substrates, the graphene was synthesized by chemical vapor deposition(CVD). Optical microscopic images which were not possible to show the detailed characterization of graphene growth were adjusted and analyzed using image analyzing software. As a result it was possible to show the detailed growth mechanism of graphene by utilizing the image analysis. Nucleation of graphene on Cu grain boundary and its growth behavior into Cu grain are shown. In addition, the movement of graphene grain boundary interacting with Cu grain boundary and pinholes during growth was illustrated in detail, and the cause and result are discussed as a result of those interactions.

Size and Density of Graphene Domains Grown with Different Annealing Times

  • Jung, Da Hee;Kang, Cheong;Nam, Ji Eun;Kim, Jin-Seok;Lee, Jin Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3312-3316
    • /
    • 2013
  • Single crystals of hexagonal graphenes were successfully grown on Cu foils using the atmospheric pressure chemical vapor deposition (CVD) method. We investigated the effects of reaction parameters, such as the growth temperature and annealing time, on the size, coverage, and density of graphene domains grown over Cu foil. The mean size of the graphene domains increased significantly with increases in both the growth temperature and annealing time, and similar phenomena were observed in graphene domains grown by low pressure CVD over Cu foil. From the comparison of micro Raman spectroscopy in the graphene films grown with different annealing times, we found that the nucleation and growth of the domains were strongly dependent on the annealing time and growth temperature. Therefore, we confirmed that when reaction time was same, the number of layers and the degree of defects in the synthesized graphene films both decreased as the annealing time increased.