Browse > Article
http://dx.doi.org/10.12925/jkocs.2015.32.2.232

Improvement of PDMS graphene transfer method through surface modification of target substrate  

Han, Jae-Hyung (School of Electronics Engineering, Kyungpook National University)
Choi, Mu-Han (School of Electronics Engineering, Kyungpook National University)
Publication Information
Journal of the Korean Applied Science and Technology / v.32, no.2, 2015 , pp. 232-239 More about this Journal
Abstract
In this paper, we study the dry transfer technology utilizing PDMS (Polydimethylsiloxane) stamp of a large single-layer graphene grown on Cu-foil as catalytic metal by using Chemical Vapor Deposition (CVD). By changing the surface property of the target substrate through $UV/O_3$ treatment, we can transfer the graphene on the target substrate while minimizing mechanical damages of graphene layer. Multi-layer (1~4 layers) graphene was stacked on $SiO_2/Si$ wafer successfully by repeating thetransfer method/process and then optical transmittance and sheet resistance of graphene layers have been measured as a quality assessment.
Keywords
graphene; dry transfer method; surface modification; polydimethylsiloxane; surface energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. K. Geim and K. S. Novoselov, The rise of graphene, Nature materials, 6, 183-191 (2007).   DOI
2 N. Stander, B. Huard, and D. Goldhaber-Gordon, Evidence for Klein tunneling in graphene p-n junctions, Physical Review Letters, 102 (2), 026807 (2009)   DOI
3 K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, M. I. Katsnelson, I. V Grigorieva, S. V Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197-200 (2005).   DOI
4 Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438, 201-204 (2005).   DOI
5 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706-710 (2009).   DOI
6 L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, High-speed graphene transistors with a self-aligned nanowire gate, Nature, 467, 305-308 (2010).   DOI
7 H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M. C. Cheng, Carbon dioxide gas sensor using a graphene sheet, Sensors and Actuators, B: Chemical, 157, 310-313 (2011).   DOI
8 Y. Zheng, G.-X. Ni, C.-T. Toh, M.-G. Zeng, S.-T. Chen, K. Yao, and B. Ozyilmaz, Gate-controlled nonvolatile graphene-ferroelectric memory, Applied Physics Letters, 94(16), 163505 (2009).   DOI
9 S. Park and R. S. Ruoff, Chemical methods for the production of graphenes, nature nanotechnology, 4, 217-224 (2009).   DOI
10 C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene, Science, 312, 1191-1196 (2006).   DOI
11 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324, 1312-1314 (2009).   DOI
12 X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes, Nano Letters, 9(12), 4359-4363 (2009).   DOI
13 M. J. Allen, V. C. Tung, L. Gomez, Z. Xu, L. M. Chen, K. S. Nelson, C. Zhou, R. B. Kaner, and Y. Yang, Soft transfer printing of chemically converted graphene, Advanced Materials, 21, 2098-2102 (2009).   DOI
14 S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, nature nanotechnology, 5, 574-578 (2010).   DOI
15 S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, Role of Kinetic Factors in Chemical Vapor Graphene Using Copper Catalyst, Nano letters, 10, 4128-4133 (2010).   DOI
16 X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo, and R. S. Ruoff, Graphene films with large domain size by a two-step chemical vapor deposition process, Nano Letters, 10, 4328-4334 (2010).   DOI
17 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, 97, 187401 (2006).   DOI
18 R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science, 320, 1308 (2008).   DOI