• Title/Summary/Keyword: COX-2$NF{-\kappa}B$

Search Result 451, Processing Time 0.051 seconds

Anti-Inflammatory Effects of Ethyl Acetate Fraction from Cnidium officinale Makino on LPS-Stimulated RAW 264.7 and THP-1 Cells

  • Jeong, Jin-Boo;Hong, Se-Chul;Jeong, Hyung-Jin;Koo, Jin-Suk
    • Korean Journal of Plant Resources
    • /
    • v.25 no.3
    • /
    • pp.299-307
    • /
    • 2012
  • This work aimed to elucidate the anti-inflammatory effects of ethyl acetate fraction from Cnidium officinale Makino with a cellular system of LPS-stimulated RAW 264.7 and THP-1 cells. Some key pro-inflammatory cytokines and mediators including NO, iNOS, $PGE_2$, COX-2, TNF-${\alpha}$, NF-${\kappa}B$ p50 and NF-${\kappa}B$ p65 were studied by sandwich ELISA and western blot analysis. Ethyl acetate fraction could significantly inhibit the production of NO, $PGE_2$, TNF-${\alpha}$, iNOS and COX-2 in LPS-stimulated cell than that of single LPS-stimulated. And ethyl acetate fraction suppresses the activation of NF-${\kappa}B$ p50 and NF-${\kappa}B$ p65. All the results showed that ethyl acetate fraction had a good anti-inflammatory effect on LPS-stimulated RAW264.7 and THP-1 cells. Taken together, the anti-inflammatory actions of ethyl acetate fraction from Cnidium officinale Makino might be due to the down-regulation of NO, $PGE_2$, TNF-${\alpha}$, iNOS and COX-2 via the suppression of NF-${\kappa}B$ activation.

Antiinflammatory Effect of Lactic Acid Bacteria: Inhibition of Cyclooxygenase-2 by Suppressing Nuclear Factor-${\kappa}B$ in Raw264.7 Macrophage Cells

  • Lee, Jeong-Min;Hwang, Kwon-Tack;Jun, Woo-Jin;Park, Chang-Soo;Lee, Myung-Yul
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1683-1688
    • /
    • 2008
  • Lactobacillus casei 3260 (L. casei 3260) was evaluated in relation to the inflammatory response mediated by lipopolysaccharide (LPS)-induced nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and cyclooxygenase-2 (COX-2) expression in Raw264.7 macrophage cells. The treatment of Raw264.7 cells with L. casei 3260 significantly inhibited the secretion of tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and prostaglandins $E_{2}\;(PGE_{2})$, followed by suppression of COX-2. To clarify the molecular mechanism, the inhibitory effect of L. casei 3260 on the NF-${\kappa}B$ signaling pathway was examined based on the luciferase reporter activity. Although the treatment of Raw264.7 cells with L. casei 3260 did not affect the transcriptional activity of NF-${\kappa}B$, it did inhibit NF-${\kappa}B$ activation, as determined by the cytosolic p65 release and degradation of I-${\kappa}B{\alpha}$. Therefore, these findings suggest that the suppression of COX-2 through inhibiting the NF-${\kappa}B$ activation by LPS may be associated with the antiinflammatory effects of L. casei 3260 on Raw264.7 cells.

Inhibitory effect of Petalonia binghamiae on neuroinflammation in LPS-stimulated microglial cells (LPS에 의해 활성화된 미세아교세포에서 미역쇠 추출물의 신경염증 보호 효과)

  • Park, Jae Hyeon;Kim, Sung Hun;Lee, Sun Ryung
    • Journal of Nutrition and Health
    • /
    • v.50 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • Purpose: Neuroinflammation is mediated by activation of microglia implicated in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Inhibition of neuroinflammation may be an effective solution to treat these brain disorders. Petalonia binghamiae is known as a traditional food, based on multiple biological activities such as anti-oxidant and anti-obesity. In present study, the anti-neuroinflammatory potential of Petalonia binghamiae was investigated in LPS-stimulated BV2 microglial cells. Methods: Cell viability was measured by MTT assay. Production of nitric oxide (NO) was examined using Griess reagent. Expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was detected by Western blot analysis. Activation of nuclear factor ${\kappa}B$ ($NF-{\kappa}B$) signaling was examined by nuclear translocation of $NF-{\kappa}B$ p65 subunit and phosphorylation of $I{\kappa}B$. Results: Extract of Petalonia binghamiae significantly inhibited LPS-stimulated NO production and iNOS/COX-2 protein expression in a dose-dependent manner without cytotoxicity. Pretreatment with Petalonia binghamiae suppressed LPS-induced $NF-{\kappa}B$ p65 nuclear translocation and phosphorylation of $I{\kappa}B$. Co-treatment with Petalonia binghamiae and pyrrolidine duthiocarbamate (PDTC), an $NF-{\kappa}B$ inhibitor, reduced LPS-stimulated NO release compared to that in PB-treated or PDTC-treated cells. Conclusion: The present results indicate that extract of Petalonia binghamiae exerts anti-neuroinflammation activities, partly through inhibition of $NF-{\kappa}B$ signaling. These findings suggest that Petalonia binghamiae might have therapeutic potential in relation to neuroinflammation and neurodegenerative diseases.

Induction of Prostaglandin E2 by Porphyromonas gingivalis in Human Dental Pulp Cells

  • Kim, So-Hee;Paek, Yun-Woong;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • v.42 no.4
    • /
    • pp.149-153
    • /
    • 2017
  • Cyclooxygenase-2 (COX-2)-mediated prostaglandin $E_2$ ($PGE_2$) plays a key role in development and progression of inflammatory responses and Porphyromonas gingivalis is a common endodontic pathogen. In this study, we investigated induction of COX-2 and $PGE_2$ by P. gingivalis in human dental pulp cells (HDPCs). P. gingivalis increased expression of COX-2, but not that of COX-1. Increased levels of $PGE_2$ were released from P. gingivalis-infected HDPCs and this $PGE_2$ increase was blocked by celecoxib, a selective COX-2 inhibitor. P. gingivalis activated all three types of mitogen-activated protein kinases (MAPKs). P. gingivalis-induced activation of nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) was demonstrated by the results of phosphorylation of $NF-{\kappa}B$ p65 and degradation of inhibitor of ${\kappa}B-{\alpha}$ ($I{\kappa}B-{\alpha}$). Pharmacological inhibition of each of the three types of MAPKs and $NF-{\kappa}B$ substantially attenuated P. gingivalis-induced $PGE_2$ production. These results suggest that P. gingivalis should promote endodontic inflammation by stimulating dental pulp cells to produce $PGE_2$.

Anti-inflammatory Effects of the Methanol Extract of Polytrichum Commune via NF-κB Inactivation in RAW 264.7 Macrophage Cells

  • Cho, Woong;Park, Seung-Jae;Shin, Ji-Sun;Noh, Young-Su;Cho, Eu-Jin;Nam, Jung-Hwan;Lee, Kyung-Tae
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.385-393
    • /
    • 2008
  • As an attempt to search for bioactive natural products exerting anti-inflammatory activity, we evaluated the effects of the methanol extract of Polytrichum commune Hedw (PCM) (Polytrichaceae) on lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$) and pro-inflammatory cytokines release in murine macrophage cell line RAW 264.7. PCM potently inhibits the production of NO, $PGE_2$, tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-6. Consistent with these results, PCM also concentration-dependently inhibited LPS-induced inducible NO synthase (iNOS) and cyclooxygase (COX)-2 at the protein levels, and iNOS, COX-2, TNF-$\alpha$ and IL-6 at the mRNA levels without an appreciable cytotoxic effect on RAW 264.7 macrophag cells. Furthermore, PCM inhibited LPS-induced nuclear factor-kappa B (NF-$\kappa$B) activation as determined by NF-$\kappa$B reporter gene assay, and this inhibition was associated with a decrease in the nuclear translocation of p65 and p50 NF-$\kappa$B. Taken together, these results suggest that PCM may play an anti-inflammatory role in LPS-stimulated RAW 264.7 macrophages through the inhibitory regulation of iNOS, COX-2, TNF-$\alpha$ and IL-6 via NF-$\kappa$B inactivation.

Effects of Polygoni Cuspidati Radix on the $H_2O_2$-treated LLC-$PK_1$ Cell's Redox Status and NF-${\kappa}B$ Signaling (호장근(虎杖根)이 $H_2O_2$에 노출된 LLC-$PK_1$ 세포의 Redox Status 및 NF-${\kappa}B$ Signaling에 미치는 영향)

  • Kim, Sol-Ri;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.483-490
    • /
    • 2012
  • This study was designed to identify the effects of Polygoni cuspidati Radix(PCR) on the generation of superoxide anion radicals (${\cdot}O_2{^-}$), nitric oxide (NO), peroxynitrite ($ONOO^-$) in the renal epithelial cells of mouse(LLC-$PK_1$). The effects of PCR on the expression of inflammation-related proteins, IKK-${\alpha}$, phospho-$I{\kappa}B-{\alpha}$, NF-${\kappa}B$ (p50, p65), COX-2, iNOS, IL-$1{\beta}$, VCAM-1, were examined by western blotting. For this study, the fluorescent probes, namely dihydrorhodamine 123 (DHR 123), 2',7'-dichloro dihydrofluorescein diacetate (DCFDA), 4,5-diaminofluorescein (DAF-2) were used. Protein expression levels of IKK-${\alpha}$, phospho-$I{\kappa}B-{\alpha}$, NF-${\kappa}B$ (p50, p65), COX-2, iNOS, IL-$1{\beta}$, VCAM-1 were assayed by western blot. PCR reduced $H_2O_2$-induced cell death dose-dependently. It inhibited the generation of ${\cdot}O_2{^-}$, NO, $ONOO^-$ and $PGE^2$ in the $H_2O_2$-treated LLC-PK1 cells in vitro. PCR inhibited the espression of IKK-${\alpha}$, phospho-$I{\kappa}B-{\alpha}$, COX-2, iNOS, IL-$1{\beta}$ and VCAM-1 genes by means of decreasing the NF-${\kappa}B$ activation. These results suggest that PCR is an effective NO, ${\cdot}O_2{^-}$, $ONOO^-$ scavenger, and this substance recommended to be applied in treatment for the inflammatory process and inflammation-related disease.

NF-${\kappa}$ B Activation and Cyclooxygenase-2 Expression Induced by Toll-Like Receptor Agonists can be Suppressed by Isoliquiritigenin (Isoliquiritigenin의 toll-like receptor agonists에 의해서 유도된 NF-${\kappa}$B 활성화와 cyclooxygenase-2 발현 억제)

  • Park, Se-Jeong;Yang, Seung-Ju;Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.220-224
    • /
    • 2009
  • Toll-like receptors(TLRs) are pattern recognition receptors(PRRs) that recognize pathogen-associated molecular patterns(PAMPs) and regulate the activation of innate immunity. All TLR signaling pathways culminate in the activation of NF-${\kappa}$B, leading to the induction of inflammatory gene products such as COX-2. Licorice (Glycyrrhiza uralensis) has been used for centuries as an herbal medicine. Isoliquiritigenin(ILG), a simple chalcone-type flavonoid, is an active component present in licorice and has been used to treat many chronic diseases. However, the mechanism as to how ILG mediates health effects is still largely unknown. In the present report, we present biochemical evidence that ILG inhibits the NF-${\kappa}$B activation induced by TLR agonists and the overexpression of downstream signaling components of TLRs, MyD88, IKK${\beta}$, and p65. ILG also inhibits TLR agonists-induced COX-2 expression. These results suggest that anti-inflammatory effects of ILG are caused by modulation of the immune responses regulated by TLR signaling pathways.

Wild Ginseng Exerts Anti-inflammatory Effects via $NF-{\kappa}B$ inactivation in RAW 264.7 Cells (장뇌산삼의 $NF-{\kappa}B$ 억제를 통한 RAW 264.7 세포에서의 항염증 효과)

  • Ahn, Sang-Hyun;Kim, Jin-Tack;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.498-503
    • /
    • 2007
  • Inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 are important inflammatory mediators that have been implicated in pathogenesis of inflammation and certain types of human cancers. The present study was designed in order to determine whether Wild ginseng (Panax ginseng C. A. Mayer) could modulate $I{\kappa}B$-kinase (IKK), iNOS and COX-2 gene expression and its immune responses in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS, 1 ${\mu}/m{\ell}$). Wild ginseng extract dose-dependantly (*0.5 - 2 ${\mu}/m{\ell}$) decreased the LPS-induced IKK, iNOS and COX-2 mRNA expression and its immune responses. Moreover, it inhibited unclear factor (NF)-${\kappa}B$ immune response by LPS. These data be likely to indicate that Wild ginseng may acts as inflammatory regulator and may be possible to develope a useful agent for inflammatory diseases.

Phenethyl Isothiocyanate Inhibits Ovalbumin-induced Inducible Nitric Oxide Synthase Expression (Ovalbumin에 의해서 유도된 inducible nitric oxide synthase 발현에 대한 phenethyl isothiocyanate의 억제효과)

  • Shin, Hwa-Jeong;Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.759-762
    • /
    • 2012
  • Egg allergies have been reported as one of the most prevalent food hypersensitivities in the pediatric population. One of the major egg allergens is ovalbumin (OVA), which is the major protein in the egg whites. Phenethyl isothiocyanate (PEIC) from cruciferous vegetables has an effect on anti-inflammatory therapy. In the present report, we show that PEIC inhibits the nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activation induced by OVA. PEIC also inhibits the OVA-induced inducible nitric oxide synthase (iNOS) expression and nitrite production. However, PEIC did not suppress the cyclooxygenase-2 (COX-2) expression induced by OVA. These results suggest that PEIC has the specific mechanism for anti-inflammatory responses and efficient anti-allergic activities.

The Study of anti-inflammatory Mechanism with Cobra Venom on Astrocytes of Rats (뇌(腦) 성상세포(星狀細胞)를 대상으로 한 Cobrotoxin의 염증(炎症) 치료(治療) 기전(機轉) 연구(硏究))

  • Yoo, Jae-ryong;Song, Ho-sueb
    • Journal of Acupuncture Research
    • /
    • v.22 no.3
    • /
    • pp.155-167
    • /
    • 2005
  • Objectives : The purpose of this study was to investigate the anti-inflammatory effect of Cobrotoxin on binding affinity of cobrotoxin with P50, $IKK{\alpa}$ and $IKK{\beta}$, activities of NF-${\kappa}B$, Cell viability of astrocyte, expressions of protein molecules of NF-${\kappa}B$ such as P50, P-$1{kappa}B$, $1{\kappa}B$ and iflammation related genes such as Cox-2, iNOS, cPLA2 in the SNP or LPS induced Inflammatory pathway of Rats' astrocytes. Methods : In this study, The expression of cytosolic phospholipase A2, Nitric oxcide, Cyclooxygenase-2 and inducible nitrogen oxide synthase was determined by western blotting with corresponding antibodies, and the generation of NF-${\kappa}B$ was assayed by EMSA method in astrocytes of rats. The Cell viability of astrocytes was determined by MTT assay, and Binding affinity of Cobrotoxin with P50, $IKK{\alpha}$ and $IKK{\beta}$ was assayed by Surface plasmon resonance analysis, and NF-${\kappa}B$ dependent luciferase activity was determined by luciferase analysis, and Uptake of cobrotoxin in astrocytes was identified by Confocal laser scanning microscope Results : 1. Compared with control, LPS-induced NF-${\kappa}B$ DNA binding activity was decreased significantly by 0.1, $0.5{\mu}g/m{\ell}$ of Cobrotoxin in Astrocyte. 2. Compared with control, LPS-induced NF-kB dependent luciferase expression was decreased significantly by 0.1, 0.5 and $1{\mu}g/m{\ell}$ of Cobrotoxin in Astrocyte. 3. Compared with control, SNP induced P50, $I{\kappa}B$ expressions in astrocyte were decreased significantly by 0.1, 0.5 and $1{\mu}g/m{\ell}$ of Cobrotoxin and P-$1{\kappa}B$ expression was decreased significantly by 0.5 and $1{\mu}g/m{\ell}$ of Cobrotoxin. 4. Compared with control, LPS induced P50, $1{\kappa}B$ expressions in astrocyte were decreased significantly by 0.5 and $1{\mu}g/m{\ell}$ of Cobrotoxin. 5. Compared with control, SNP induced Cox-2, iNOS, CPLA2 expressions in astrocyte were decreased significantly by $1{\mu}g/m{\ell}$ of Cobrotoxin. 6. Compared with control, LPS induced Cox-2, cPLA2 expressions in astrocyte were decreased significantly by 0.1, 0.5, $1{\mu}g/m{\ell}$ of Cobrotoxin and iNOS expression was decreased significantly by 0.5, $1{\mu}g/m{\ell}$ of Cobrotoxin. 7. Compared with $0.5{\mu}g/m{\ell}$ of Cobrotoxin, SNP-induced NF-${\kappa}B$ DNA bindins activity in astrocyte was increased significantly by Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 1mM and Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 5mM. 8. Compared with $0.5{\mu}g/m{\ell}$ of Cobrotoxin, LPS-induced NF-${\kappa}B$ DNA binding activity in astrocyte was increased significantly by Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 1mM, Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 5mM, Cobrotoxin $0.5{\mu}g/m{\ell}$with GSH 1mM and Cobrotoxin $0.5{\mu}g/m{\ell}$ with GSH 5mM 9. Compared with $0.1{\mu}g/m{\ell}$ of cobrotoxin, SNP induced P50 expressions in astrocyte were increased significantly by Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 1mM, Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 5mM Cobrotoxin $0.5{\mu}g/m{\ell}$ with GSH 1mM and Cobrotoxin $0.5{\mu}g/m{\ell}$ with GSH 5mM. 10. The uptake of the labeled cobrotoxin into the cells was shown under a confocal laser scanning microscope. cobrotoxin was uptaken into the membrane and nucleus of astrocytes. Conclusions : In summary, the present results demonstrate that cobrotoxin directly binds to sulfhydryl group of p50 and IKKS resulting In the reduction of translocation of p50 and IkB release, thereby inhibits activation of NF-${\kappa}B$, and suggest that pico to nanomolar range of cobrotoxin could inhibit the expression of genes in the NF-${\kappa}B$ signal pathway.

  • PDF