• Title/Summary/Keyword: CONWIP System

Search Result 24, Processing Time 0.021 seconds

Comparison of DBR with CONWIP in a Production Line with Constant Processing Times (상수 공정 시간을 갖는 라인 생산 시스템에서 DBR과 CONWIP의 성능 비교 분석)

  • Lee, Hochang;Seo, Dong-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.11-24
    • /
    • 2012
  • We compared a DBR(drum-buffer-rope) system with a CONWIP(constant work-in-process) system in a production line with constant processing times. Based on the observation that a WIP-controlled line production system such as DBR and CONWIP is equivalent to a m-node tandem queue with finite buffer, we applied a max-plus algebra based solution method for the tandem queue to evaluate the performance of two systems. Numerical examples with 6 workstations were also used to demonstrate the proposed analysis. The mathematical analyses support that CONWIP outperforms DBR in terms of expected waiting time and WIP. Unlike the CONWIP case, sequencing workstations in a DBR affects the performance of the system. Delaying a bottleneck station in a DBR reduces expected waiting time.

A Decision of the Production Control Policy using Simulation in Zinc Manufacturing Process (시뮬레이션을 이용한 아연공장의 생산통제 방안의 결정)

  • Kim, Jun-Mo;Kim, Yearn-Min
    • IE interfaces
    • /
    • v.21 no.4
    • /
    • pp.418-434
    • /
    • 2008
  • This paper studied issues in decision making on the production control policy of a cathode plate manufacturing process in zinc refining plant. The present production system has a long lead time from raw materials (aluminum plate) to products (cathode plate) due to many WIP inventories. Because WIP inventories are stocked at each process and moved from one place to another frequently, they are the main cause of inefficiency in the process. In this paper, to solve this problem, several production control policies have been identified and studied. Several simulation models are used to compare the performances of these production control policies. The output lead time and WIP (Work In Process) of real production system are compared with those of simulation models. PUSH, CONWIP, DBR, KANBAN and CONWIP-DBR models have been used to simulate and review the optimized production control policy that achieves the target output quantities with decreased lead time and WIP. The simulation results of each production control policy show that CONWIP and CONWIP-DBR models are the good production control policy under the present production system. Especially in present production system, CONWIP with one parameter is easier control policy than CONWIP-DBR with two parameters. Therefore CONWIP has been selected as the best optimum production control policy. With CONWIP, lead time has been reduced by 97% (from 6,653 to 187 minute) and WIP has been reduced from 1,488 to 53, compared to the present system.

Comparison of CONWIP with Kanban in a Production Line with Constant Processing Times (상수 공정시간을 갖는 라인 생산 시스템에서 CONWIP과 간반의 성능 비교)

  • Lee, Ho-Chang;Seo, Dong-Won
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.2
    • /
    • pp.51-65
    • /
    • 2011
  • We compared a CONWIP(constant work-in-process) system with a kanban system in a production line with constant processing times. Based on the observation that a WIP-controlled line production system such as CONWIP and kanban is equivalent to a m-node tandem queue with finite buffer, we applied a max-plus algebra based solution method for the tandem queue to evaluate the performance of two systems. Numerical examples with 6 workstations were used to demonstrate the proposed analysis. The numerical results support the previous studies that CONWIP outperforms kanban in terms of expected waiting time and WIP. Unlike the kanban case, sequencing workstations in a CONWIP does not affect the performance of the system.

A Study on Determine CONWIP(Constant Work In Process) System Model in the Dynamic Environment (동적환경하에서의 CONWIP(Constant Work In Process) 시스템 모델설정에 관한 연구)

  • 송관배;박재현;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.4
    • /
    • pp.209-217
    • /
    • 2003
  • The traditional Kanban needs a lot of preconditions for fitting conditions of dynamic production processing environment. The traditional Kanban isn't suitable conditions of dynamic production processing environment. Therefore conditions of dynamic production processing environment is needed more stable system. This study is describe CONWIP system such as suitable in dynamic production processing environment. Most Pull system is a Kanban system than use Kanban cards or signal for production management and inventory control. The object of Kanban system is reducing inventory between shop-floor that can reduce inventiry cost. If the system reduce the number of Kanban cards would be reduce the working process WIP, can be reduced and can be found all potential problem of production between shop-floors. This study apply to CONWIP system model for Korean industrial companies.

Approximate Analysis of a CONWIP System with a Lot Production (로트 단위로 가공되는 CONWIP 시스템의 근사적 분석)

  • Lee, Hyo-Seong;Lee, Jeong-Eun
    • IE interfaces
    • /
    • v.11 no.3
    • /
    • pp.55-63
    • /
    • 1998
  • In this study we consider a CONWIP system in which the processing times at each station follow an exponential distribution and the demands for the finished products arrive according to a compound Poisson process. The demands that are not satisfied instantaneously are assumed to be lost. We assume that the lot size at each station is greater than one. For this system we develop an approximation method to obtain the performance measures such as steady state probabilities of the number of parts at each station, average number of parts at each station and the proportion of lost demands. For the analysis of the proposed CONWIP system, we model the CONWIP system as a closed queueing network with a synchronization station and analyze the closed queueing network using a product form approximation method. A recursive technique is used to solve the subnetwork in the application of the product-form approximation method. To test the accuracy of the approximation method, the results obtained from the approximation method were compared with those obtained by simulation. Comparisons with simulation have shown that the accuracy of the approximate method is acceptable.

  • PDF

Approximate Analysis of a CONWIP system with Compound Poisson Demands (Compound Poisson 수요를 갖는 CONWIP 시스템의 근사적 분석)

  • 이정은;이효성
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.3
    • /
    • pp.153-168
    • /
    • 1998
  • In this study we consider a CONWIP system in which the processing times at each station follow an exponential distribution and the demands for the finished Products arrive according to a compound Poisson process. The demands that are not satisfied instantaneously are assumed to be backordered. For this system we develop an approximation method to obtain the performance measures such as steady state probabilities of the number of parts at each station, the proportion of backordered demands, the average number of backordered demands and the mean waiting time of a backordered demand. For the analysis of the proposed CONWIP system, we model the CONWIP system as a closed queueing network with a synchronization station and analyze the closed queueing network using a product form approximation method. A matrix geometric method is used to solve the subnetwork in the application of the product-form approximation method. To test the accuracy of the approximation method, the results obtained from the approximation method were compared with those obtained by simulation. Comparisons with simulation have shown that the approximate method provides fairly good results.

  • PDF

Order Based Performance Evaluation of a CONWIP System with Compound Poisson Demands (복합포아송 수요를 가지는 CONWIP 시스템에서 고객집단의 성능평가)

  • Park Chan-U;Lee Hyo-Seong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.8-12
    • /
    • 2004
  • In this study we consider a CONWIP system in which the processing times at each station follow a Coxian distribution and the demands for the finished products arrive according to a compound Poisson process. The demands that are not satisfied are backordered according to the number of demands that exist at their arrival instants. For this system we develop an approximation method to calculate order based performance measures such as the mean time of fulfilling a customer order and the mean number o: customer orders. For the analysis of the proposed CONWIP system, we model the CONWIP system as a closed queueing network with a synchronization station and analyze the closed queueing network using a product form approximation method. Numerical tests show that the approximation method provides fairly good estimation of the performance measures of interest.

  • PDF

Performance Evaluation of a CONWIP System with Compound Poisson Demands and Coxian Processing Times (복합포아송 수요와 Coxian 가공시간을 갖는 CONWIP 시스템의 성능평가)

  • 박찬우;이효성
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.63-79
    • /
    • 2006
  • In this study we consider a CONWIP system in which the processing times at each station follow a Coxian distribution and the demands for the finished products arrive according to a compound Poisson process. The demands that are not satisfied immediately are either backordered or lost according to the number of demands that exist at their arrival Instants. For this system we develop an approximation method to calculate performance measures such as steady state probabilities of the number of parts at each station, proportion of lost demands and the mean number of backordered demands. For the analysis of the proposed CONWIP system, we model the CONWIP system as a closed queueing network with a synchronization station and analyze the closed queueing network using a product-form approximation method. A recursive technique is used to solve the subnetwork in the application of the product-form approximation method. To test the accuracy of the approximation method, the results obtained from the approximation method are compared with those obtained by simulation. Comparisons with simulation show that the approximation method provides fairly good results.

Performance Evaluation of a Multi - Item Production System Operated by the CONWIP Control Mechanism (CONWIP 통제방식에 의해 운영되는 다품목 생산시스템의 성능평가)

  • Park, Chan-Woo;Lee, Hyo-Seong;Kim, Chang-Gon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2002
  • We study a multi-component production/inventory system in which individual components are made to meet various demand types. We assume that the demands arrive according to a Poisson process, but there is a fixed probability that a demand requests a particular kit of different components. Each component is produced by a flow line with several stations. The production of each component is operated by the CONWIP control mechanism. To analyse this system, we propose an approximation method based on aggregation method. In application of the aggregation method, a product-form approximation technique as well as a matrix-geometric method is used. Comparisons with simulation show that the approximation method provides fairly good results.

Order Based Performance Evaluation of a CONWIP System with Compound Poisson Demands (복합포아송 수요를 갖는 CONWIP 시스템의 주문관점에서의 성능평가)

  • Park, Chan-Woo;Lee, Hyo-Seong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.1
    • /
    • pp.137-146
    • /
    • 2007
  • In this study we consider a CONWIP system studied in Park and Lee [1] in which the processing times at each station follow a Coxian distribution and the demands for the finished products arrive according to a compound Poisson process. The demands that are not satisfied Immediately are either backordered or lost according to the number of demands that exist at their arrival instants. For this system using the results in [1] we develop an approximation method to calculate order based performance measures such as the mean time of fulfilling a customer order and the mean number of customer orders. To test the accuracy of the approximation method, the results obtained from the approximation method are compared with those obtained by simulation. Comparisons with simulation have shown that the approximate method provides fairly good results.