• Title/Summary/Keyword: CMP (Chemical Mechanical Polishing)

Search Result 428, Processing Time 0.026 seconds

Wafer Edge Profile Control for Improvement of Removal Uniformity in Oxide CMP (산화막CMP의 연마균일도 향상을 위한 웨이퍼의 에지형상제어)

  • Choi, Sung-Ha;Jeong, Ho-Bin;Park, Young-Bong;Lee, Ho-Jun;Kim, Hyoung-Jae;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.289-294
    • /
    • 2012
  • There are several indicators to represent characteristics of chemical mechanical planarization (CMP) such as material removal rate (MRR), surface quality and removal uniformity on a wafer surface. Especially, the removal uniformity on the wafer edge is one of the most important issues since it gives a significant impact on the yield of chip production on a wafer. Non-uniform removal rate at the wafer edge (edge effect) is mainly induced by a non-uniform pressure from nonuniform pad curvature during CMP process, resulting in edge exclusion which means the region that cannot be made to a chip. For this reason, authors tried to minimize the edge exclusion by using an edge profile control (EPC) ring. The EPC ring is equipped on the polishing head with the wafer to protect a wafer from the edge effect. Experimental results showed that the EPC ring could dramatically minimize the edge exclusion of the wafer. This study shows a possibility to improve the yield of chip production without special design changes of the CMP equipment.

A Study on Pressure Distribution for Uniform Polishing of Sapphire Substrate

  • Park, Chul jin;Jeong, Haedo;Lee, Sangjik;Kim, Doyeon;Kim, Hyoungjae
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.61-66
    • /
    • 2016
  • Total thickness variation (TTV), BOW, and surface roughness are essential characteristics for high quality sapphire substrates. Many researchers have attempted to increase removal rate by controlling the key process parameters like pressure and velocity owing to the high cost of consumables in sapphire chemical mechanical polishing (CMP). In case of the pressure approach, increased pressure owing to higher deviation of pressure over the wafer leads to significant degradation of the TTV. In this study, the authors focused on reducing TTV under the high-pressure conditions. When the production equipment polishes multiple wafers attached on a carrier, higher loads seem to be concentrated around the leading edge of the head; this occurs because of frictional force generated by the combination of table rotation and the height of the gimbal of the polishing head. We believe the skewed pressure distribution during polishing to be the main reason of within-wafer non-uniformity (WIWNU). The insertion of a hub ring between the polishing head and substrate carrier helped reduce the pressure deviation. Adjusting the location of the hub ring enables tuning of the pressure distribution. The results indicated that the position of the hub ring strongly affected the removal profile, which confirmed that the position of the hub ring changes the pressure distribution. Furthermore, we analyzed the deformation of the head via finite element method (FEM) to verify the pressure non-uniformity over the contact area Based on experiment and FEM results, we determined the optimal position of hub ring for achieving uniform polishing of the substrate.

The Tribological Behaviors of Mesoporous $SiO_2$ Thin Film Formed by Sol-Gel and Self-Assembly Method (졸겔법과 자가조립법을 통해 제조된 메조포러스 $SiO_2$ 박막의 트라이볼로지 특성)

  • Lee, Young-Ze;Shin, Yun-Ha;Kim, Ji-Hoon;Kim, Ji-Man;Kim, Tae-Sung
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.298-300
    • /
    • 2007
  • Frictional characteristics of mesoporous $SiO_2$ thin films were evaluated with different pore sizes. The films were manufactured by sol-gel and self-assembly methods to have a porous structure. The pores on the surface may play as the outlet of wear particle and the storage of lubricant so that the surface interactions could be improved. The pores were exposed on the surface by chemical mechanical polishing (CMP) or plasma-etching after forming the porous films. The ball-on-disk tests with mesoporous $SiO_2$ thin films on glass specimen were conducted at sliding speed of 15 rpm and a load of 0.26 N. The results show considerable dependency of friction on pore size of mesoporous $SiO_2$ thin films. The friction coefficient decreased as increasing the pore size. CMP process was very useful to expose the pores on the surface.

Pressure Effect on Ultrafiltration of Used CMP Slurry (한외여과를 이용한 폐 CMP Slurry의 분리에서 압력의 영향)

  • Hong, Seongho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.486-492
    • /
    • 2004
  • CMP (Chemical mechanical polishing) is inevitable process to overcome $0.2{\mu}m$ wire thickness in semiconductor industry. In this study, effect of pressure to separate used CMP slurry into solid and liquid for recycle and reuse by ultrafiltration was investigated. Also, water quality after the ultrafiltration such as turbidity and TDS was evaluated. The material of membrane used in the study was PVDF. The used CMP contained 0.5% of solid content and then concentrated up to 18% by weight. The used CMP can not be concentrated higher than 18% because of viscosity and abrasion of pump. The tested feed pressures were 22.1, 29.4 and 36.8 psi. The results have shown that operating at 36.8 psi has advantages on operation time and total flux. The specific flux showed some variation at 1 to 15 of concentration factor but no difference after 15 of concentration factor. Mass balance of solid at initial stage of the operation showed some unbalance because of deposition of solid on the membrane, which was main reason to reduce flux. Turbidity was very stable at lower than 0.2NTU for 22.1 and 36.8 psi of feed pressure.

A study on the decay of friction force during CMP (화학 기계적 연마에서 마찰력 감소에 관한 연구)

  • 권대희;김형재;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.972-975
    • /
    • 2002
  • An understanding of tribological behavior in CMP(Chemical Mechanical Polishing) is one of the most important things to reveal the mechanism of material removal. In CMP, the contact type is thought to be semi-direct, elastohydrodynamic contact type from the Stribeck diagram, which is a combination of solid-solid direct contact and hydrodynamic lubrication with thin liquid film. This study is focused on the decay of friction force during CMP from two points of view, one of which is change of the real contact area and the other is the decrease of the elastic modulus of the pad caused by the increase of the temperature during CMP Experiments are implemented with elastic modulus measuring system and tool dynamometer. Results show that the decay of friction force during CMP results from the decrease of the real contact pressure working on an abrasive, which is induced by the decrease of elastic modulus of pad caused by the increase of temperature. And, the phenomenon is thought to be happen specially in the case that the weight concentration of abrasive in slurry is small enough.

  • PDF

Spectral Analysis of Nanotopography Impact on Surfactant Concentration in CMP Using Ceria Slurry (세리아 슬러리를 사용한 화학적 기계적 연마에서 계면활성제의 농도에 따른 나노토포그래피의 스펙트럼 분석)

  • ;Takeo Katoh
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.61-61
    • /
    • 2003
  • CMP(Chemical Mechanical Polishing)는 VLSI의 제조공정에서 실리콘웨이퍼의 절연막내에 있는 토포그래피를 제어할 수 있는 광역 평탄화 기술이다. 또한 최근에는 실리콘웨이퍼의 나노토포그래피(Nanotopography)가 STI의 CMP 공정에서 연마 후 필름의 막 두께 변화에 많은 영향을 미치게 됨으로 중요한 요인으로 대두되고 있다. STI CMP에 사용되는 CeO$_2$ 슬러리에서 첨가되는 계면활성제의 농도에 따라서 나노토포그래피에 미치는 영향을 제어하는 것이 필수적 과제로 등장하고 있다. 본 연구에서는 STI CMP 공정에서 사용되는 CeO$_2$ 슬러리에서 계면활성제의 농도에 따른 나노토포그래피의 의존성에 대해서 연구하였다. 실험은 8 "단면연마 실리콘웨이퍼로 PETEOS 7000$\AA$이 증착 된 것을 사용하였으며, 연마 시간에 따른 나노토포그래피 의존성을 알아보기 위해 연마 깊이는 3000$\AA$으로 일정하게 맞췄다. 그리고 CMP 공정은 Strasbaugh 6EC를 사용하였으며, 패드는 IC1000/SUBA4(Rodel)이다. 그리고 연마시 적용된 압력은 4psi(Pounds per Square Inch), 헤드와 정반(table)의 회전속도는 각각 70rpm이다 슬러리는 A, B 모두 CeO$_2$ 슬러리로 입자크기가 다른 것을 사용하였고, 농도를 달리한 계면활성제가 첨가되었다. CMP 전 후 웨이퍼의 막 두께 측정은 Nanospec 180(Nanometrics)과 spectroscopic ellipsometer (MOSS-ES4G, SOPRA)가 사용되었다.

  • PDF

Effect of Diamond Abrasive Shape of CMP Conditioner on Polishing Pad Surface Control (CMP 컨디셔너의 다이아몬드 입자 모양이 연마 패드 표면 형상 제어에 미치는 영향)

  • Lee, Donghwan;Lee, Kihun;Jeong, Seonho;Kim, Hyungjae;Cho, Hanchul;Jeong, Haedo
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.330-336
    • /
    • 2019
  • Conditioning is a process involving pad surface scraping by a moving metallic disk that is electrodeposited with diamond abrasives. It is an indispensable process in chemical-mechanical planarization, which regulates the pad roughness by removing the surface residues. Additionally, conditioning maintains the material removal rates and increases the pad lifetime. As the conditioning continues, the pad profile becomes unevenly to be deformed, which causes poor polishing quality. Simulation calculates the density at which the diamond abrasives on the conditioner scratch the unit area on the pad. It can predict the profile deformation through the control of conditioner dwell time. Previously, this effect of the diamond shape on conditioning has been investigated with regard to microscopic areas, such as surface roughness, rather than global pad-profile deformation. In this study, the effect of diamond shape on the pad profile is evaluated by comparing the simulated and experimental conditioning using two conditioners: a) random-shaped abrasive conditioner (RSC) and b) uniform-shaped abrasive conditioner (USC). Consequently, it is confirmed that the USC is incapable of controlling the pad profile, which is consistent with the simulation results.

A study on the Electrochemical Reaction Characteristic of Cu electrode According to the $KNO_3$ electrolyte ($KNO_3$ 전해액을 이용한 Cu 전극의 전기 화학적 반응 특성 고찰)

  • Han, Sang-Jun;Park, Sung-Woo;Lee, Sung-Il;Lee, Young-Kyun;Jun, Young-Kil;Choi, Gwon-Woo;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.49-49
    • /
    • 2007
  • 최근 반도체 소자의 고집적화와 나노 (nano) 크기의 회로 선폭으로 인해 기존에 사용되었던 텅스텐이나 알루미늄 금속배선보다, 낮은 전기저항과 높은 electro-migration resistance가 필요한 Cu 금속배선이 주목받게 되었다. 하지만, Cu CMP 공정 시 높은 압력으로 인하여 low-k 유전체막의 손상과 디싱과 에로젼 현상으로 인한 문제점이 발생하게 되었다. 본 논문에서는, $KNO_3$ 전해액의 농도가 Cu 표면에 미치는 영향을 알아보기 위해 Tafel Curve와 CV (cyclic voltammograms)법을 사용하여 전기화학적 특징을 알아보았고 scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray Diffraction (XRD) 분석을 통해 금속표면을 비교 분석하였다.

  • PDF

Analysis of Material Removal Rate Profile and Stress Distribution According to Retainer Pressure (CMP에서 리테이너링의 압력에 따른 연마율 프로파일과 응력 분포 해석)

  • Lee, Hyun-Seop;Lee, Sang-Jik;Jeong, Suk-Hoon;An, Joon-Ho;Jeong, Hea-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.482-483
    • /
    • 2009
  • In chemical mechanical planarization (CMP) process, the uniformity of stress acting on wafer surface is a key factor for uniform material removal of thin film especially in the oxide CMP. In this paper, we analyze the stress on the contact region between wafer and pad with finite-element analysis (FEA). The setting pressure acting on wafer back side was $500g/cm^2$ and the retainer pressure was changed from 300 to $700g/cm^2$. The polishing test is also done with the same conditions. The material removal rate profiles well-matched with stress distribution.

  • PDF

Properties of $Bi_{3.25}La_{0.75}Ti_3O_{12}$ Thin Film Capacitors Fabricated by Damascene Process (Damascene 공정으로 제조한 $Bi_{3.25}La_{0.75}Ti_3O_{12}$ 박막 캐패시터 소자 특성)

  • Shin, Sang-Hun;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.368-369
    • /
    • 2006
  • Ferroelectric thin films have attracted much attention for applications in nonvolatile ferroelectric random access memories(NVFeRAM) from the view points of high speed operation, low power consumption, and large scale Integration[1,2]. Among the FRAM, BLT is of particular interest. as it is not only crystallized at relatively low processing temperature, but also shows highly fatigue resistance and large remanent polarization Meanwhile, these submicron ferroelectric capacitors were fabricated by a damascene process using Chemical mechanical polishing (CMP). BLT capacitors were practicable by a damascene process using CMP. The P-E hysteresis were measured under an applied bias of ${\pm}5V$ by using an RT66A measurement system. The electric properties such as I-V were determined by using HP4155A analysers.

  • PDF