• Title/Summary/Keyword: CMOS transceiver

Search Result 97, Processing Time 0.021 seconds

A Non-coherent IR-UWB RF Transceiver for WBAN Applications in 0.18㎛ CMOS (0.18㎛ CMOS 공정을 이용한 WBAN용 비동기식 IR-UWB RF 송수신기)

  • Park, Myung Chul;Chang, Won Il;Ha, Jong Ok;Eo, Yun Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.36-44
    • /
    • 2016
  • In this paper, an Impulse Radio-Ultra Wide band RF Transceiver for WBAN applications is implemented in $0.18{\mu}m$ CMOS technology. The designed RF transceiver support 3-5GHz UWB low band and employs OOK(On-Off Keying) modulation. The receiver employs non-coherent energy detection architecture to reduce complexity and power consumption. For the rejection of the undesired interferers and improvement of the receiver sensitivity, RF active notch filter is integrated. The VCO based transmitter employs the switch mechanism. As adapt the switch mechanism, power consumption and VCO leakage can be reduced. Also, the spectrum mask is always same at each center frequency. The measured sensitivity of the receiver is -84.1 dBm at 3.5 GHz with 1.579 Mbps. The power consumption of the transmitter and receiver are 0.3nJ/bit and 41 mW respectively.

Design of 24-GHz 1Tx 2Rx FMCW Transceiver (24 GHz 1Tx 2Rx FMCW 송수신기 설계)

  • Kim, Tae-Hyun;Kwon, Oh-Yun;Kim, Jun-Seong;Park, Jae-Hyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.758-765
    • /
    • 2018
  • This paper presents a 24-GHz frequency-modulated continuous wave(FMCW) radar transceiver with two Rx and one Tx channels in 65-nm complementary metal-oxide-semiconductor(CMOS) process and implemented it on a radar system using the developed transceiver chip. The transceiver chip includes a $14{\times}$ frequency multiplier, low-noise amplifier, down-conversion mixer, and power amplifier(PA). The transmitter achieves >10 dBm output power from 23.8 to 24.36 GHz and the phase noise is -97.3 GHz/Hz at a 1-MHz offset. The receiver achieves 25.2 dB conversion gain and output $P_{1dB}$ of -31.7 dBm. The transceiver consumes 295 mW of power and occupies an area of $1.63{\times}1.6mm^2$. The radar system is fabricated on a low-loss Duroid printed circuit board(PCB) stacked on the low-cost FR4 PCBs. The chip and antenna are placed on the Duroid PCB with interconnects and bias, gain blocks and FMCW signal-generating circuitry are mounted on the FR4 PCB. The transmit antenna is a $4{\times}4$ patch array with 14.76 dBi gain and receiving antennas are two $4{\times}2$ patch antennas with a gain of 11.77 dBi. The operation of the radar is evaluated and confirmed by detecting the range and azimuthal angle of the corner reflectors.

A Triple-Band Transceiver Module for 2.3/2.5/3.5 GHz Mobile WiMAX Applications

  • Jang, Yeon-Su;Kang, Sung-Chan;Kim, Young-Eil;Lee, Jong-Ryul;Yi, Jae-Hoon;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.295-301
    • /
    • 2011
  • A triple-band transceiver module for 2.3/2.5/3.5 GHz mobile WiMAX, IEEE 802.16e, applications is introduced. The suggested transceiver module consists of RFIC, reconfigurable/multi-resonance MIMO antenna, embedded PCB, mobile WiMAX base band, memory and channel selection front-end module. The RFIC is fabricated in $0.13{\mu}m$ RF CMOS process and has 3.5 dB noise figure(NF) of receiver and 1 dBm maximum power of transmitter with 68-pin QFN package, $8{\times}8\;mm^2$ area. The area reduction of transceiver module is achieved by using embedded PCB which decreases area by 9% of the area of transceiver module with normal PCB. The developed triple-band mobile WiMAX transceiver module is tested by performing radio conformance test(RCT) and measuring carrier to interference plus noise ratio (CINR) and received signal strength indication (RSSI) in each 2.3/2.5/3.5 GHz frequency.

Design of single-chip NFC transceiver (단일 칩 NFC 트랜시버의 설계)

  • Cho, Jung-Hyun;Kim, Shi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.1
    • /
    • pp.68-75
    • /
    • 2007
  • A single chip NFC transceiver supporting not only NFC active and passive mode but also 13.56MHz RFID reader and tag mode was designed and fabricated. The proposed NFC transceiver can operate as a RFID tag even without external power supply which has dual antenna structure for initiator and target. The area increment due to additional target antenna is negligible because the target antenna is constructed by using a shielding layer of initiator antenna. The analog front end circuit of the proposed NFC transceiver consists of a transmitter and receiver of reader/writer block supporting NFC initiator or RFID reader mode, and a tag circuit for target of passive NFC mode or RFID tag mode. The maximum baud rate of the proposed NFC device is 212kbps by using UART serial interface. The chip has been designed and fabricated using a Magnachip's $0.35{\mu}m$ double poly 4-metal CMOS process, and the effective area of the chip is 2200um by 3600um.

A 6 Gbps/pin Low-Power Half-Duplex Active Cross-Coupled LVDS Transceiver with Switched Termination

  • Kim, Su-A;Kong, Bai-Sun;Lee, Chil-Gee;Kim, Chang-Hyun;Jun, Young-Hyun
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.612-614
    • /
    • 2008
  • A novel linear switched termination active cross-coupled low-voltage differential signaling (LVDS) transceiver operating at 1.5 GHz clock frequency is presented. On the transmitter side, an active cross-coupled linear output driver and a switched termination scheme are applied to achieve high speed with low current. On the receiver side, a shared pre-amplifier scheme is employed to reduce power consumption. The proposed LVDS transceiver implemented in an 80 nm CMOS process is successfully demonstrated to provide a data rate of 6 Gbps/pin, an output data window of 147 ps peak-to-peak, and a data swing of 196 mV. The power consumption is measured to be 4.2 mW/pin at 1.2 V.

  • PDF

Design of a CMOS D/A Converter for advanced wireless transceiver of high speed and high resolution (고속 고해상도의 무선통신 송 $\cdot$ 수신기용 CMOS D/A 변환기 설계)

  • Cho Hyun-Ho;Park Cheong-Yong;Yune Gun-Shik;Ha Sung-Min;Yoon Kwang-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.549-552
    • /
    • 2004
  • The thesis describes the design of 12bit digital-to-analog converter (DAC) which shows the conversion rate of 500MHz and the power supply of 3.3V with 0.35${\mu}m$ CMOS 1-poly 4-metal process for advanced wireless transceiver of high speed and high resolution. The proposed DAC employes segmented structure which consists of 6bit MSB, 3bit mSB, 3bit LSB for area efficiency Also, using a optimized aspect ratio of process and new triple diagonal symmetric centroid sequence for high yield and high linearity. The proposed 12bit current mode DAC was employs new deglitch circuit for the decrement of the glitch energy. Simulation results show the conversion rate of 500MHz, and the power dissipation of 85mW at single 3.3V supply voltage. Both DNL and INL are found to be smaller than ${\pm}0.65LSB/{\pm}0.8LSB$.

  • PDF

A 1.5 Gbps Transceiver Chipset in 0.13-μm CMOS for Serial Digital Interface

  • Lee, Kyungmin;Kim, Seung-Hoon;Park, Sung Min
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.552-560
    • /
    • 2017
  • This paper presents a transceiver chipset realized in a $0.13-{\mu}m$ CMOS technology for serial digital interface of video data transmission, which compensates the electrical cable loss of 45 dB in maximum at 1.5 Gbps. For the purpose, the TX equips pre-emphasis in the main driver by utilizing a D-FF with clocks generated from a wide-range tuning PLL. In RX, two-stage continuous-time linear equalizers and a limiting amplifier are exploited as a front-end followed by a 1/8-rate CDR to retime the data with inherent 1:8 demultiplexing function. Measured results demonstrate data recovery from 270 Mbps to 1.5 Gbps. The TX consumes 104 mW from 1.2/3.3-V supplies and occupies the area of $1.485mm^2$, whereas the RX dissipate 133 mW from a 1.2-V supply and occupies the area of $1.44mm^2$.

A 3-GSymbol/s/lane MIPI C-PHY Transceiver with Channel Mismatch Correction Circuit (채널 부정합 보정 회로를 가진 3-GSymbol/s/lane MIPI C-PHY 송수신기)

  • Choi, Seokwon;Song, Changmin;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1257-1264
    • /
    • 2019
  • A 3-GSymbol/s/lane transceiver, which supports the mobile industry processor interface (MIPI) C-physical layer (PHY) specification version 1.1, is proposed. It performs channel mismatch correction to improve the signal integrity that is deteriorated by using three-level signals over three channels. The proposed channel mismatch correction is performed by detecting channel mismatches in the receiver and adjusting the delay times of the transmission data in the transmitter according to the detection result. The channel mismatch detection in the receiver is performed by comparing the phases of the received signals with respect to the pre-determined data pattern transmitted from the transmitter. The proposed MIPI C-PHY receiver is designed using a 65 nm complementary metal-oxide-semiconductor (CMOS) process with 1.2 V supply voltage. The area and power consumption of each transceiver lane are 0.136 ㎟ and 17.4 mW/GSymbol/s, respectively. The proposed channel mismatch correction reduces the time jitter of 88.6 ps caused by the channel mismatch to 34.9 ps.

Design of a Single Chip CMOS Transceiver for the Fiber Optic Modules (광통신 모듈용 단일칩 CMOS 트랜시버의 설계)

  • 채상훈;김태련;권광호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • This paper describes the design of monolithic optical transceiver circuitry being used as a part of the fiber optic modules. It has been designed in 0.6 ${\mu}{\textrm}{m}$ 2-poly 3 metal silicon CMOS analog technology and operates at 155.52 Mbps(STM-1) data rates. It drives laser diode to transmit intensity modulated optical signal according to 155.52 Mbps electrical data from system. Also, it receives 155.52 Mbps optical data that transmitted from other systems and converts it to electrical data using photo diode and amplifier. To avoid noise and interference between transmitter and receiver on one chip, layout techniques such as special placement, power supply separation, guard ring, and protection wall were used in the design. The die area is 4 ${\times}$ 4 $\textrm{mm}^2$ and the estimated power dissipation is less than 900 ㎽ with a single 5 V supply.

A High Speed CMOS Arrayed Optical Transmitter for WPON Applications (WPON 응용을 위한 고속 CMOS어레이 광트랜스미터)

  • Yang, Choong-Reol;Lee, Sang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.6
    • /
    • pp.427-434
    • /
    • 2013
  • In this paper, the design and layout of a 2.5 Gbps arrayed VCSEL driver for optical transceiver having arrayed multi-channel of integrating module is confirmed. In this paper, a 4 channel 2.5 Gbps VCSEL (vertical cavity surface emitting laser) driver array with automatic optical power control is implemented using $0.18{\mu}m$ CMOS process technology that drives a $1550{\mu}m$ high speed VCSEL used in optical transceiver. To enhance the bandwidth of the optical transmitter, active feedback amplifier with negative capacitance compensation is exploited. We report a distinct improvement in bandwidth, voltage gain and operation stability at 2.5Gbps data rate in comparison with existing topology. The 4-CH chip consumes only 140 mW of DC power at a single 1.8V supply under the maximum modulation and bias currents, and occupies the die area of $850{\mu}m{\times}1,690{\mu}m$ excluding bonding pads.