• Title/Summary/Keyword: CMOS Power Amplifier

Search Result 392, Processing Time 0.022 seconds

Integrated Current-Mode DC-DC Buck Converter with Low-Power Control Circuit

  • Jeong, Hye-Im;Lee, Chan-Soo;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.235-241
    • /
    • 2013
  • A low power CMOS control circuit is applied in an integrated DC-DC buck converter. The integrated converter is composed of a feedback control circuit and power block with 0.35 ${\mu}m$ CMOS process. A current-sensing circuit is integrated with the sense-FET method in the control circuit. In the current-sensing circuit, a current-mirror is used for a voltage follower in order to reduce power consumption with a smaller chip-size. The N-channel MOS acts as a switching device in the current-sensing circuit where the sensing FET is in parallel with the power MOSFET. The amplifier and comparator are designed to obtain a high gain and a fast transient time. The converter offers well-controlled output and accurately sensed inductor current. Simulation work shows that the current-sensing circuit is operated with an accuracy of higher than 90% and the transient time of the error amplifier is controlled within $75{\mu}sec$. The sensing current is in the range of a few hundred ${\mu}A$ at a frequency of 0.6~2 MHz and an input voltage of 3~5 V. The output voltage is obtained as expected with the ripple ratio within 1%.

A CMOS Stacked-FET Power Amplifier Using PMOS Linearizer with Improved AM-PM

  • Kim, Unha;Woo, Jung-Lin;Park, Sunghwan;Kwon, Youngwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.2
    • /
    • pp.68-73
    • /
    • 2014
  • A linear stacked field-effect transistor (FET) power amplifier (PA) is implemented using a $0.18-{\mu}m$ silicon-on-insulator CMOS process for W-CDMA handset applications. Phase distortion by the nonlinear gate-source capacitance ($C_{gs}$) of the common-source transistor, which is one of the major nonlinear sources for intermodulation distortion, is compensated by employing a PMOS linearizer with improved AM-PM. The linearizer is used at the gate of the driver-stage instead of main-stage transistor, thereby avoiding excessive capacitance loading while compensating the AM-PM distortions of both stages. The fabricated 836.5 MHz linear PA module shows an adjacent channel leakage ratio better than -40 dBc up to the rated linear output power of 27.1 dBm, and power-added efficiency of 45.6% at 27.1 dBm without digital pre-distortion.

Transceiver IC for CMOS 65nm 1-channel Beamformer of X/Ku band (X/Ku 대역 CMOS 65nm 단일 채널 빔포머 송수신기 IC )

  • Jaejin Kim;Yunghun Kim;Sanghun Lee;Byeong-Cheol Park;Seongjin Mun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.43-47
    • /
    • 2024
  • This paper introduces a phased-array single-channel transceiver beamformer IC built using 65nm CMOS technology, covering the 8-16 GHz range and targeting the X and Ku bands for radar and satellite communications. Each signal path in the IC features a low noise amplifier (LNA), power amplifier (PA), phase shifter (PS), and variable gain amplifier (VGA), which allow for phase and gain adjustments essential for beam steering and tapering control in typical beamforming systems. Test results show that the phase-compensated VGA offers a gain range of 15 dB with 0.25 dB increments and an RMS gain error of 0.27 dB. The active vector modulator phase shifter delivers a 360° phase range with 2.8125° steps and an RMS phase error of 3.5°.

A 170㎼ Low Noise Amplifier Using Current Reuse Gm-boosting Technique for MedRadio Applications (전류 재사용 Gm-boosting 기술을 이용한 MedRadio 대역에서의 170㎼ 저잡음 증폭기)

  • Kim, InSoo;Kwon, Kuduck
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.53-57
    • /
    • 2017
  • This paper proposes a 401MHz-406MHz low noise amplifier for MedRadio applications. The proposed low noise amplifier adopts a common gate amplifier topology using current reuse gm-boosting technique. The proposed low noise amplifier shows better performance of voltage gain and noise figure than the conventional gm-boosted common gate amplifier in the same power consumption. The proposed current-reuse gm-boosted low noise amplifier achieves a voltage gain of 22 dB, a noise figure of 2.95 dB, and IIP3 of -17 dBm while consuming $170{\mu}W$ from a 0.5 V supply voltage in $0.13{\mu}m$ CMOS process.

High Speed And Low Voltage Swing On-Chip BUS (고속 저전압 스윙 온 칩 버스)

  • Yang, Byeong-Do;Kim, Lee-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.56-62
    • /
    • 2002
  • A new high speed and low voltage swing on-chip BUS using threshold voltage swing driver and dual sense amplifier receiver is proposed. The threshold voltage swing driver reduces the rising time in the bus to 30% of the full CMOS inverter driver and the dual sense amplifier receiver increases twice the throughput. of the conventional reduced-swing buses using sense amplifier receiver. With threshold voltage swing driver and dual sense amplifier receiver combined, approximately 60% speed improvement and 75% power reduction are achieved in the proposed scheme compared to the conventional full CMOS inverter for the on-chip bus.

An Inherently dB-linear All-CMOS Variable Gain Amplifier

  • Kwon, Ji-Wook;Ryu, Seung-Tak
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.336-343
    • /
    • 2011
  • This paper introduces a simple variable gain amplifier (VGA) structure that shows an inherently dB-linear gain control property. Requiring no additional components for dB-linear control, the structure is compact and power efficient. The designed two-stage VGA shows a gain control range of 60dB with the gain error in the range of ${\pm}0.4$ dB. The power consumption including the output buffer is 20.4 mW from 1.2 V supply voltage with bandwidth of 630 MHz. The prototype was fabricated in a 0.13 ${\mu}m$ CMOS process and the VGA core occupies 0.06 $mm^2$.

Design of 94-GHz High-Gain Differential Low-Noise Amplifier Using 65-nm CMOS (65-nm CMOS 공정을 이용한 94 GHz 고이득 차동 저잡음 증폭기 설계)

  • Seo, Hyun-woo;Park, Jae-hyun;Kim, Jun-seong;Kim, Byung-sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.393-396
    • /
    • 2018
  • Herein, a 94-GHz low-noise amplifier (LNA) using the 65-nm CMOS process is presented. The LNA is composed of a four-stage differential common-source amplifier and impedance matching is accomplished with transformers. The fabricated LNA chip shows a peak gain of 25 dB at 94 GHz and has a 3-dB bandwidth at 5.5 GHz. The chip consumes 46 mW of DC power from a 1.2-V supply, and the total chip area, including the pads, is $0.3mm^2$.

RF CMOS Power Amplifiers for Mobile Terminals

  • Son, Ki-Yong;Koo, Bon-Hoon;Lee, Yu-Mi;Lee, Hong-Tak; Hong, Song-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.4
    • /
    • pp.257-265
    • /
    • 2009
  • Recent progress in development of CMOS power amplifiers for mobile terminals is reviewed, focusing first on switching mode power amplifiers, which are used for transmitters with constant envelope modulation and polar transmitters. Then, various transmission line transformers are evaluated. Finally, linear power amplifiers, and linearization techniques, are discussed. Although CMOS devices are less linear than other devices, additional functions can be easily integrated with CMOS power amplifiersin the same IC. Therefore, CMOS power amplifiers are expected to have potential applications after various linearity and efficiency enhancement techniques are used.

The Analysis of Input Power Matching for CMOS RF Low Noise Amplifier Design

  • Choi, Seung-Il;Oh, Tae-Hyun;Jhon, Hee-Sauk;Shin, Hyung-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.941-944
    • /
    • 2005
  • In this paper, the analysis of input power matching for CMOS RF Low Noise Amplifier (LNA) design is introduced. With two input power matching techniques, the performance of LNAs is estimated according to gain and noise figure. This process can be expressed easily by theoretical method and using simulation. These analytical methods are useful in that they can provide enough insights for designing CMOS RF LNAs.

  • PDF

A Novel Adaptive Biasing Scheme for CMOS Op-Amps

  • Kurkure Girish;Dutta Aloke K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.168-172
    • /
    • 2005
  • In this paper, we present a new adaptive biasing scheme for CMOS op-amps. The designed circuit has been used in an Operational Transconductance Amplifier (OTA) with ${\pm}1$ V power supply, and it has improved the positive and negative slew rates from 2.92 V/msec to 1242 V/msec and from 1.56 V/msec to 133 V/msec respectively, while maintaining all the small-signal performance parameter values the same as that without adaptive biasing (as expected), however, there was a marginal decrease of the dynamic range. The most useful features of the proposed circuit are that it uses a very low number of components (thus not creating severe area penalty) and requires only 25 nW of extra stand-by power.