• Title/Summary/Keyword: CFU assay

Search Result 178, Processing Time 0.031 seconds

Detection of Salmonella in Milk by Polymerase Chain Reaction

  • Park, Weon-Sang
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.3
    • /
    • pp.262-266
    • /
    • 2000
  • The polymerase chain reaction was used to selectively detect sequences within the fimbrial antigen of Salmonella enteritidis. Sterile milk was artificially inoculated with known amount of S. enteritidis and then DNA was extracted with guanidine thiocyanate/phenol/chloroform, followed by PCR. A detection limit of as few as 100 colony forming unit (cfu) per 0.5 ml milk was obtained with this method. For the whole procedure, it took only 5 h. A semi-quantitative polymerase chain reaction assay which allows an estimation of colony forming unit of S. enteritidis was developed. Known amount of standard plasmid pGem-4Z-Sef B(-) containing cloned S. enteritidis fimbrial antigen gene was co-amplified with Salmonella genomic DNA isolated from artificially inoculated milk. The same set of primers were used for the amplification and the products were cleaved with Bam HI. The concentration of the target DNA could be estimated by comparing the intensity of the two bands after electrophoresis. The PCR-based protocol described in this paper provides a rapid, simple, and sensitive method for detecting S. enteritidis in milk.

  • PDF

Anti-Myelosuppression Effects of Korean Red Ginseng in SD Rat Injected with 5-fluorouracil

  • Park, Hye-Jung;Han, Jong-Min;Kim, Hyeong-Geug;Choi, Min-Kyung;Lee, Jin-Seok;Son, Chang-Gue
    • The Journal of Korean Medicine
    • /
    • v.33 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • Objectives: This study aimed to investigate the preventive effect of red ginseng (RG) on 5-fluorouracil (5-FU)-induced side effects focusing on myelosuppression. Methods: Rats (n = 50) were divided into five groups, nave, control (ip, 5-FU injection of 150 mg/kg), and RG pre-treatment (po, 25, 50 and 100 mg/kg for 5 days before 5-FU injection). On the $7^{th}$ day after 5-FU injection, we evaluated the effects using peripheral hematological parameters, colony-forming assay, cytokine levels and histopathological finding. Results: The peripheral white blood cell and the differential count were dramatically suppressed by 5-FU, while RG (50 and 100 mg/kg) treatment significantly improved total white blood cell, neutrophil, lymphocyte and platelet counts. Also, RG (100 mg/kg) pre-treatment significantly increased the number of CFU-GM colony compared with the control group. RG pre-treatment also ameliorated the histopathological damage in bone marrow, spleen, stomach and small intestine tissue. Conclusions: These results demonstrate that Korean RG has preventive effects against 5-FU-induced myelotoxicity and gastrointestinal damage.

Characterization and ACE Inhibitory Activity of Fermented Milk with Probiotic Lactobacillus plantarum K25 as Analyzed by GC-MS-Based Metabolomics Approach

  • Zhang, Min;Jiang, Yunyun;Cai, Miao;Yang, Zhennai
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.903-911
    • /
    • 2020
  • Addition of probiotics to yogurt with desired health benefits is gaining increasing attention. To further understand the effect of probiotic Lactobacillus plantarum on the quality and function of fermented milk, probiotic fermented milk (PFM) made with probiotic L. plantarum K25 and yogurt starter (L. delbrueckii ssp. bulgaricus and Streptococcus thermophilus) was compared with the control fermented milk (FM) made with only the yogurt starter. The probiotic strain was shown to survive well with a viable count of 7.1 ± 0.1 log CFU/g in the PFM sample after 21 days of storage at 4℃. The strain was shown to promote formation of volatiles such as acetoin and 2,3-butanediol with milk fragrance, and it did not cause post-acidification during refrigerated storage. Metabolomics analysis by GC-MS datasets coupled with multivariate statistical analysis showed that addition of L. plantarum K25 increased formation of over 20 metabolites detected in fermented milk, among which γ-aminobutyric acid was the most prominent. Together with several other metabolites with relatively high levels in fermented milk such as glyceric acid, malic acid, succinic acid, glycine, alanine, ribose, and 1,3-dihydroxyacetone, they might play important roles in the probiotic function of L. plantarum K25. Further assay of the bioactivity of the PFM sample showed significant (p < 0.05) increase of ACE inhibitory activity from 22.3% at day 1 to 49.3% at day 21 of the refrigerated storage. Therefore, probiotic L. plantarum K25 could be explored for potential application in functional dairy products.

Construction of Recombinant Pichia pastoris Carrying a Constitutive AvBD9 Gene and Analysis of Its Activity

  • Tu, Jian;Qi, Kezong;Xue, Ting;Wei, Haiting;Zhang, Yongzheng;Wu, Yanli;Zhou, Xiuhong;Lv, Xiaolong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2082-2089
    • /
    • 2015
  • Avian beta-defensin 9 (AvBD9) is a small cationic peptide consisting of 41 amino acids that plays a crucial rule in innate immunity and acquired immunity in chickens. Owing to its wide antibacterial spectrum, lack of a residue, and failure to induce bacterial drug resistance, AvBD9 is expected to become a substitute for conventional antibiotics in the livestock and poultry industries. Using the preferred codon of Pichia pastoris, the mature AvBD9 peptide was designed and synthesized, based on the sequence from GenBank. The P. pastoris constitutive expression vector pGHKα was used to construct a pGHKα-AvBD9 recombinant plasmid. Restriction enzyme digestion was performed using SacI and BglII to remove the ampicillin resistance gene, and the plasmid was electrotransformed into P. pastoris GS115. High-expression strains with G418 resistance were screened, and the culture supernatant was analyzed by Tricine-SDS-PAGE and western blot assay to identify target bands of about 6 kDa. A concentrate of the supernatant containing AvBD9 was used for determination of antimicrobial activity. The supernatant concentrate was effective against Escherichia coli, Salmonella paratyphi, Salmonella pullorum, Pseudomonas aeruginosa, Enterococcus faecalis, and Enterobacter cloacae. The fermentation product of P. pastoris carrying the recombinant AvBD9 plasmid was adjusted to 1.0 × 108 CFU/ml and added to the drinking water of white feather broilers at different concentrations. The daily average weight gain and immune organ indices in broilers older than 7 days were significantly improved by the AvBD9 treatment.

Effects of Adding Oyster Crassostrea gigas Shell Powder on the Food Quality of Chinese Cabbage Kimchi (굴(Crassostrea gigas) 패각 분말 첨가에 의한 배추김치의 식품학적 품질 변화)

  • Do, Hyoung-Hun;Kim, Ji-Hoon;Han, Hae-Na;Kim, Song-Hee;Kim, Gab-Jin;Eom, Sung-Hwan;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.5
    • /
    • pp.596-603
    • /
    • 2015
  • This study investigated the effects of adding oyster shell powder (OSP) from Crassostrea gigas on the food quality of Chinese cabbage Kimchi (CCK). We monitored the changes in microbial levels, pH, acidity and sensory evaluation during the fermentation of CCK treated with various contents of OSP. The microbial assay showed that adding OSP to CCK inhibited the growth of viable cells, total coliforms, and lactic acid bacteria, with the greatest growth inhibition against lactic acid bacteria over the fermentation period. After fermentation for 18 days, the lactic acid bacterial counts in CCK treated with OSP (0.3%, 0.5% and 1%) were at least 1 log CFU/g lower than those of control CCK. In addition, the pH and acidity of CCK treated with OSP were lower than in control CCK over the fermentation period. The overall sensory evaluation of CCK with 0.3% OSP was better than that of control CCK after fermentation for 24 days. In conclusion, OSP treatment, especially 0.3% OSP, enhances the food quality and extends the self-life of CCK, while minimizing the detrimental effects on its sensory characteristics.

Assay of ${\beta}$-Glucosidase Activity of Bifidobacteria and the Hydrolysis of Isoflavone Glycosides by Bifidobacterium sp. Int-57 in Soymilk Fermentation

  • Jeon, Ki-Suk;Ji, Geun-Eog;Hwang, In-Kyeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.8-13
    • /
    • 2002
  • The isoflavone glycosides are hydrolyzed by ${\beta}$-glucosidase from gut microbes to the bioactive aglycones. However, the specific bacteria from the human intestinal tract that are involved in the metabolism of these compounds are not known. This study was undertaken to develop a fermented soymilk which converts isoflavones to the more bioactive aglycones form using a Bifidobacterium strain. The ${\beta}$-glucosidase activity of 15 Bifidobacterium strains were measured during cell growth. Among them, Bifidobacterium sp. Int-57 was selected for this study, because it has the highest ${\beta}$-glucosidase activity. Growth, acid development, ${\beta}$-glucosidase activity, and the hydrolysis of daidzin and genistin were investigated in four soymilks inoculated with Bifidobacterium sp. Int-57. After 12 h of fermentation, the counts of viable Bifidobacterium sp. Int-57 in all the soymilks reached a level of more than $10^8$ cfu/ml, which was then maintained. The pH of soymilks started to decrease rapidly after 6 h of fermentation and leveled off after 18 h. The titratable acidity of BL# 1 soymilk, BL#2 soymilk, and JP#l soymilk increased from 0.18 to 1.21, 1.15, and $1.08\%$ over the fermentation period, respectively. After 24 h of fermentation, the $\beta$-glucosidase activity in BL#1 soymilk, BL#2 soymilk, JP#l soymilk, and JP#2 soymilk increased to 59.528, 40.643, 70.844, and 56.962 mU/ml, respectively. The isoflavone glycosides, daidzin and genistin, in soymilks were hydrolyzed completely in the relatively short fermentation time of 18 h. These results show that Bifidobacterium sp. Int-57 can be used as a potential starter culture for developing fermented soymilk which has completely hydrolyzed isoflavone glycosides.

The Safety of Brucella abortus strain RB51 in pregnant cattle (부루세라 RB51 백신의 임신소에 대한 안전성)

  • Kim, Jong-man;Woo, Sung-ryong;Lee, Ji-youn;Jung, Suk-chan;Jean, Young-hwa;Kim, Jae-hoon;Kweon, Chang-hee;Yoon, Young-dhuk;Yoo, Han-sang
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.667-675
    • /
    • 2003
  • The safety of Brucella abortus strain RB51(SRB51) was investigated in dairy cows and Korean native cattle of 4~7th month of gestation. From experimentally inoculated cattle, 18 of 25 (72.0%) dairy cows, and 3 of 10 (30.0%) Korean native cattle were aborted or delivered premature fetus. There were no significant differences in the incidence of abortion depending on the inoculation route (intramuscular and subcutaneous) and dosages ($1{\times}10^9$, $2.8{\times}10^9$, and $4.0{\times}10^9$ CFU). The antibodies to the SRB51 were measured by a dot blot enzyme-linked immunosorbent assay. The highest titers to SRB51 were detected between 5~7 weeks after inoculation and the specitic antibody could be detected up to 28 weeks after inoculation. The SRB51 was isolated from amnio-allantoic fluid, bronchial lymph node, mammary gland, and supramammary lymph node in 5 of 25 dairy cows during 4 weeks after either abortion or delivery. Although SRB51 was isolated from 4 of 24 aborted fetus or normally delivered calves at parturition time, it was not isolated during 4 weeks afterward. Eleven of twentyfive dairy cows showed the endometritis and/or necrosis until 6 weeks after delivery, no lesions were seen at 8 weeks after delivery and uterus from control dairy cows. The results of present study revealed that SRB51 might induce the clinical signs of brucellosis in the pregnant cattle at 4~7th month of gestation.

Regular Exercise Training Increases the Number of Endothelial Progenitor Cells and Decreases Homocysteine Levels in Healthy Peripheral Blood

  • Choi, Jeong Kyu;Moon, Ki Myung;Jung, Seok Yun;Kim, Ji Yong;Choi, Sung Hyun;Kim, Da Yeon;Kang, Songhwa;Chu, Chong Woo;Kwon, Sang Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.163-168
    • /
    • 2014
  • Endothelial progenitor cells (EPCs) are known to play an important role in the repair of damaged blood vessels. We used an endothelial progenitor cell colony-forming assay (EPC-CFA) to determine whether EPC numbers could be increased in healthy individuals through regular exercise training. The number of functional EPCs obtained from human peripheral blood-derived AC133 stem cells was measured after a 28-day regular exercise training program. The number of total endothelial progenitor cell colony-forming units (EPC-CFU) was significantly increased compared to that in the control group (p=0.02, n=5). In addition, we observed a significant decrease in homocysteine levels followed by an increase in the number of EPC-CFUs (p=0.04, n=5), indicating that the 28-day regular exercise training could increase the number of EPC colonies and decrease homocysteine levels. Moreover, an inverse correlation was observed between small-endothelial progenitor cell colony-forming units (small-EPC-CFUs) and plasma homocysteine levels in healthy men (r=-0.8125, p=0.047). We found that regular exercise training could increase the number of EPC-CFUs and decrease homocysteine levels, thus decreasing the cardiovascular disease risk in men.

Visual Analysis for Detection and Quantification of Pseudomonas cichorii Disease Severity in Tomato Plants

  • Rajendran, Dhinesh Kumar;Park, Eunsoo;Nagendran, Rajalingam;Hung, Nguyen Bao;Cho, Byoung-Kwan;Kim, Kyung-Hwan;Lee, Yong Hoon
    • The Plant Pathology Journal
    • /
    • v.32 no.4
    • /
    • pp.300-310
    • /
    • 2016
  • Pathogen infection in plants induces complex responses ranging from gene expression to metabolic processes in infected plants. In spite of many studies on biotic stress-related changes in host plants, little is known about the metabolic and phenotypic responses of the host plants to Pseudomonas cichorii infection based on image-based analysis. To investigate alterations in tomato plants according to disease severity, we inoculated plants with different cell densities of P. cichorii using dipping and syringe infiltration methods. High-dose inocula (${\geq}10^6cfu/ml$) induced evident necrotic lesions within one day that corresponded to bacterial growth in the infected tissues. Among the chlorophyll fluorescence parameters analyzed, changes in quantum yield of PSII (${\Phi}PSII$) and non-photochemical quenching (NPQ) preceded the appearance of visible symptoms, but maximum quantum efficiency of PSII ($F_v/F_m$) was altered well after symptom development. Visible/near infrared and chlorophyll fluorescence hyperspectral images detected changes before symptom appearance at low-density inoculation. The results of this study indicate that the P. cichorii infection severity can be detected by chlorophyll fluorescence assay and hyperspectral images prior to the onset of visible symptoms, indicating the feasibility of early detection of diseases. However, to detect disease development by hyperspectral imaging, more detailed protocols and analyses are necessary. Taken together, change in chlorophyll fluorescence is a good parameter for early detection of P. cichorii infection in tomato plants. In addition, image-based visualization of infection severity before visual damage appearance will contribute to effective management of plant diseases.

Application of SYBR Green real-time PCR assay for the specific detection of Salmonella spp. (Salmonella spp. 특이적인 검출을 위한 SYBR Green real-time PCR 기법 적용)

  • Shin, Seung Won;Cha, Seung Bin;Lee, Won-Jung;Shin, Min-Kyoung;Jung, Myunghwan;Yoo, Anna;Jung, Byeng Yeal;Yoo, Han Sang
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.1
    • /
    • pp.25-28
    • /
    • 2013
  • The aim of this study was to applicate and evaluate a SYBR Green real-time PCR for the specific detection of Salmonella spp. Specificity of the PCR method was confirmed with 48 Salmonella spp. and 5 non-Salmonella strains using invA gene primer. The average threshold cycle ($C_T$) of Salmonella spp. was $11.83{\pm}0.78$ while non-Salmonella spp. was $30.86{\pm}1.19$. Correlation coefficients of standard curves constructed using $C_T$ versus copy number of Salmonella Enteritidis ATCC 13076 showed good linearity ($R^2=0.993$; slope = 3.563). Minimum level of detection with the method was > $10^2$ colony forming units (CFU)/mL. These results suggested that the SYBR Green real-time PCR might be applicable for the specific detection of Salmonella spp. isolates.