DOI QR코드

DOI QR Code

Characterization and ACE Inhibitory Activity of Fermented Milk with Probiotic Lactobacillus plantarum K25 as Analyzed by GC-MS-Based Metabolomics Approach

  • Zhang, Min (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University) ;
  • Jiang, Yunyun (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University) ;
  • Cai, Miao (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University) ;
  • Yang, Zhennai (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University)
  • Received : 2019.11.05
  • Accepted : 2020.02.27
  • Published : 2020.06.28

Abstract

Addition of probiotics to yogurt with desired health benefits is gaining increasing attention. To further understand the effect of probiotic Lactobacillus plantarum on the quality and function of fermented milk, probiotic fermented milk (PFM) made with probiotic L. plantarum K25 and yogurt starter (L. delbrueckii ssp. bulgaricus and Streptococcus thermophilus) was compared with the control fermented milk (FM) made with only the yogurt starter. The probiotic strain was shown to survive well with a viable count of 7.1 ± 0.1 log CFU/g in the PFM sample after 21 days of storage at 4℃. The strain was shown to promote formation of volatiles such as acetoin and 2,3-butanediol with milk fragrance, and it did not cause post-acidification during refrigerated storage. Metabolomics analysis by GC-MS datasets coupled with multivariate statistical analysis showed that addition of L. plantarum K25 increased formation of over 20 metabolites detected in fermented milk, among which γ-aminobutyric acid was the most prominent. Together with several other metabolites with relatively high levels in fermented milk such as glyceric acid, malic acid, succinic acid, glycine, alanine, ribose, and 1,3-dihydroxyacetone, they might play important roles in the probiotic function of L. plantarum K25. Further assay of the bioactivity of the PFM sample showed significant (p < 0.05) increase of ACE inhibitory activity from 22.3% at day 1 to 49.3% at day 21 of the refrigerated storage. Therefore, probiotic L. plantarum K25 could be explored for potential application in functional dairy products.

Keywords

References

  1. Laws G, Kemp R. 2019. Probiotics and health: understanding probiotic trials. N. Z. Med. J. 132: 90-96.
  2. Nicholson JK, Lindon JC, Holmes E. 1999. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29: 1181-1189. https://doi.org/10.1080/004982599238047
  3. Niwa T. 1986. Metabolic profiling with gas chromatography-mass spectrometry and its application to clinical medicine. J. Chromatogr. 379: 313-345. https://doi.org/10.1016/S0378-4347(00)80688-X
  4. Schoina V, Terpou A, Angelika-Ioanna G, Koutinas A, Kanellaki M, Bosnea L. 2015. Use of Pistacia terebinthus resin as immobilization support for Lactobacillus casei cells and application in selected dairy products. J. Food Sci. Technol. 52: 5700-5708. https://doi.org/10.1007/s13197-014-1627-9
  5. Jewett MC, Hofmann G, Nielsen J. 2006. Fungal metabolite analysis in genomics and phenomics. Curr. Opin. Biotechnol. 17: 191-197. https://doi.org/10.1016/j.copbio.2006.02.001
  6. Kieserling K, Vu TM, Drusch S, Schalow S. 2019. Impact of pectin-rich orange fibre on gel characteristics and sensory properties in lactic acid fermented yoghurt. Food Hydrocoll. 94: 152-163. https://doi.org/10.1016/j.foodhyd.2019.02.051
  7. Pradhan D, Mallappa RH, Grover S. 2020. Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control 108: 106872. https://doi.org/10.1016/j.foodcont.2019.106872
  8. Wishart DS. 2008. Metabolomics: applications to food science and nutrition research. Trends Food Sci. Technol. 9: 482-493. https://doi.org/10.1016/j.tifs.2008.03.003
  9. Lindon JC. 2007. The Handbook of Metabonomics and Metabolomics. pp.561-587. Amsterdam.
  10. Madsen K. 2011. Using metabolomics to decipher probiotic effects in patients with irritable bowel syndrome. J. Clin. Gastroenterol. 45: 389-390. https://doi.org/10.1097/MCG.0b013e31821377cf
  11. Hong Y, Hong KS, Park M, Ahn Y, Lee J, Huh C, et al. 2011. Metabonomic understanding of probiotic effects in humans with irritable bowel syndrome. J. Clin. Gastroenterol. 45: 415-425. https://doi.org/10.1097/MCG.0b013e318207f76c
  12. Zhang L, Zhang X, Liu C, Li C, Li S, Li T, et al. 2013. Manufacture of Cheddar cheese using probiotic Lactobacillus plantarum K25 and its cholesterol-lowering effects in a mice model. World J. Microbiol. Biotechnol. 29: 127-135. https://doi.org/10.1007/s11274-012-1165-4
  13. Wang J. 2012. Tenchnological properties of Lactobacillus plantarum K25. J. Food Sci. Biotechnol. 5: 518-524.
  14. Zhao YL. 2012. Acuteoral toxicity and bacterial translocation evaluation of Lactobacillus plantarum K25. Dairy Ind. China 5: 9-12.
  15. Jiang Y, Zhang J, Zhao X, Zhao W, Yu Z, Chen C, et al. 2018. Complete genome sequencing of exopolysaccharide-producing Lactobacillus plantarum K25 provides genetic evidence for the probiotic functionality and cold endurance capacity of the strain. Biosci. Biotechnol. Biochem. 82: 1225-1233. https://doi.org/10.1080/09168451.2018.1453293
  16. Gonzalez-Gonzalez C, Gibson T, Jauregi P. 2013. Novel probiotic-fermented milk with angiotensin I-converting enzyme inhibitory peptides produced by Bifidobacterium bifidum MF 20/5. Int. J. Food Microbiol. 167: 131-137. https://doi.org/10.1016/j.ijfoodmicro.2013.09.002
  17. Nejati F, Rizzello CG, Di CR, Sheikh-Zeinoddin M, Diviccaro A, Minervini F, et al. 2013. Manufacture of a functional fermented milk enriched of Angiotensin-I Converting Enzyme (ACE)-inhibitory peptides and gamma-amino butyric acid (GABA). LWT-Food Sci. Technol. 51: 183-189. https://doi.org/10.1016/j.lwt.2012.09.017
  18. Moslehishad M, Ehsani MR, Salami M, Mirdamadi S, Ezzatpanah H, Naslaji AN, et al. 2013. The comparative assessment of ACEinhibitory and antioxidant activities of peptide fractions obtained from fermented camel and bovine milk by Lactobacillus rhamnosus PTCC 1637. Int. Dairy J. 29: 82-87. https://doi.org/10.1016/j.idairyj.2012.10.015
  19. Meira SMM, Daroit DJ, Helfer VE, Correa APF, Segalin J, Carro S, et al. 2012. Bioactive peptides in water-soluble extracts of ovine cheeses from Southern Brazil and Uruguay. Food Res. Int. 48: 322-329. https://doi.org/10.1016/j.foodres.2012.05.009
  20. Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M, et al. 2003. Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur. J. Clin. Nutr. 57: 490-495. https://doi.org/10.1038/sj.ejcn.1601555
  21. Taubert D, Roesen R, Schoemig E. 2007. Effect of cocoa and tea intake on blood pressure-A meta-analysis. Arch. Int. Med. 167: 626-634. https://doi.org/10.1001/archinte.167.7.626
  22. Bujalance C, Jimenez-Valera M, Moreno E, Ruiz-Bravo A. 2006. A selective differential medium for Lactobacillus plantarum. J. Microbiol. Meth. 66: 572-575. https://doi.org/10.1016/j.mimet.2006.02.005
  23. Settachaimongkon S, Nout MJR, Fernandes ECA, Hettinga KA, Vervoort JM, Zwietering MH, et al. 2014. Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. Int. J. Food Microbiol. 177: 29-36. https://doi.org/10.1016/j.ijfoodmicro.2014.02.008
  24. Leksrisompong P, Barbano DM, Foegeding AE, Gerard P, Drake M. 2010. The roles of fat and pH on the detection thresholds and partition coefficients of three compounds: diacetyl, delta-decalactone and furaneol. J. Sens. Stud. 25: 347-370. https://doi.org/10.1111/j.1745-459X.2009.00264.x
  25. Rutella GS, Tagliazucchi D, Solieri L. 2016. Survival and bioactivities of selected probiotic lactobacilli in yogurt fermentation and cold storage: New insights for developing a bi-functional dairy food. Food Microbiol. 60: 54-61. https://doi.org/10.1016/j.fm.2016.06.017
  26. Ronca-Testoni S. 1983. Direct spectrophotometric assay for angiotensin-converting enzyme in serum. Clin. Chem. 29: 1093-1096. https://doi.org/10.1093/clinchem/29.6.1093
  27. Gao X, Pujos-Guillot E, Sebedio J. 2010. Development of a quantitative metabolomic approach to study clinical human fecal water metabolome based on Trimethylsilylationd derivatization and GC/MS analysis. Anal. Chem. 82: 6447-6456. https://doi.org/10.1021/ac1006552
  28. Settachaimongkon S, Winata V, Wang X, Nout MJR, Zwietering MH, Smid EJ. 2015. Effect of sublethal preculturing on the survival of probiotics and metabolite formation in set-yoghurt. Food Microbiol. 49: 104-115. https://doi.org/10.1016/j.fm.2015.01.011
  29. Hefa C. 2010. Volatile flavor compounds in yogurt: a review. Crit. Rev. Food Sci. 50: 938-950. https://doi.org/10.1080/10408390903044081
  30. Hugenholtz, J. 1993. Citrate metabolism in lactic acid bacteria. FEMS Microbiol. Rev. 12: 165-178. https://doi.org/10.1111/j.1574-6976.1993.tb00017.x
  31. Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ. 2010. The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics 11: 23-29. https://doi.org/10.1186/1471-2164-11-23
  32. Murgia A, Scano P, Cacciabue R, Dessi D, Caboni P. 2019. GC-MS metabolomics comparison of yoghurts from sheep's and goats' milk. Int. Dairy J. 96: 44-49. https://doi.org/10.1016/j.idairyj.2019.03.012
  33. Zareba D, Ziarno M, Scibisz I, Gawron J. 2014. The importance of volatile compound profile in the assessment of fermentation conducted by Lactobacillus casei DN-114 001. Int. Dairy J. 35: 11-14. https://doi.org/10.1016/j.idairyj.2013.09.009
  34. Nomura M, Kimoto H, Someya Y, Furukawa S, Suzuki I. 1998. Production of gamma-aminobutyric acid by cheese starters during cheese ripening. J. Dairy Sci. 81: 1486-1491. https://doi.org/10.3168/jds.S0022-0302(98)75714-5
  35. Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M. 2007. Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl. Environ. Microbiol. 73: 7283-7290. https://doi.org/10.1128/AEM.01064-07
  36. Li H, Cao Y. 2010. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39: 1107-1116. https://doi.org/10.1007/s00726-010-0582-7
  37. Owens DF, Kriegstein AR. 2002. Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. 3: 715-727. https://doi.org/10.1038/nrn919
  38. Barrett E. 2014. This article corrects: gamma-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 116: 1384-1386. https://doi.org/10.1111/jam.12496
  39. Whitley K, Marshall VM. 1999. Heterofermentative metabolism of glucose and ribose and utilisation of citrate by the smooth biotype of Lactobacillus amylovorus NCFB 2745. Antonie Van Leeuwenhoek. 75: 217-223. https://doi.org/10.1023/A:1001739532336
  40. Namgung HJ, Park HJ, Cho IH, Choi HK, Kwon DY, Shim SM, et al. 2010. Metabolite profiling of doenjang, fermented soybean paste, during fermentation. J. Sci. Food Agr. 90: 1926-1935. https://doi.org/10.1002/jsfa.4036
  41. Lee DE, Lee S, Jang ES, Shin HW, Moon BS, Lee CH. 2016. Metabolomic profiles of Aspergillus oryzae and Bacillus amyloliquefaciens during rice koji fermentation. Molecules 21: 21-39. https://doi.org/10.3390/molecules21010021
  42. Handa SS. 1986. Natural products and plants as liver protecting drugs. Fitoterapia 78: 351-355
  43. Wu J, Wu Q, Zhang J, Zhang W. 2015. New studies and progress of biological function of L-malate. Food Ind. 23: 225-228.
  44. Duan YF, Wang Y, Zhang JS, Song YX, Wang J. 2018. Dietary effects of succinic acid on the growth, digestive enzymes, immune response and resistance to ammonia stress of Litopenaeus vannamei. Fish Shellfish Immun. 78: 10-17. https://doi.org/10.1016/j.fsi.2018.04.008
  45. Settachaimongkon S, van Valenberg HJF, Gazi I, Nout MJR, van Hooijdonk TCM, Zwietering MH, et al. 2016. Influence of Lactobacillus plantarum WCFS1 on post-acidification, metabolite formation and survival of starter bacteria in set-yoghurt. Food Microbiol. 59: 14-22. https://doi.org/10.1016/j.fm.2016.04.008
  46. Maity P, Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. 2009. The Use of Neem for Controlling Gastric Hyperacidity and Ulcer. Phytother. Res. 23: 747-755. https://doi.org/10.1002/ptr.2721
  47. Effenberger-Neidnicht K, Jaegers J, Verhaegh R, de Groot H. 2014. Glycine selectively reduces intestinal injury during endotoxemia. J. Surg. Res. 192: 592-598. https://doi.org/10.1016/j.jss.2014.06.016
  48. Cieslik KA, Sekhar RV, Granillo A, Reddy A, Medrano G, Heredia CP, et al. 2018. Improved cardiovascular function in old mice after N-acetyl cysteine and glycine supplemented diet: inflammation and mitochondrial factors. J. Gerontol. A-Biol. 73: 1167-1177. https://doi.org/10.1093/gerona/gly034
  49. Cioffi CL, Guzzo PR. 2016. Inhibitors of Glycine Transporter-1: Potential Therapeutics for the Treatment of CNS Disorders. Curr. Top. Med. Chem. 16: 3404-3437. https://doi.org/10.2174/1568026616666160405113340
  50. Ospina-Rojas IC, Murakami AE, Oliveira CAL, Guerra AFQG. 2013. Supplemental glycine and threonine effects on performance, intestinal mucosa development, and nutrient utilization of growing broiler chickens. Poultry Sci. 92: 2724-2731. https://doi.org/10.3382/ps.2013-03171
  51. Mansouri-Torshizi H, Zareian-Jahromi S, Abdi K, Saeidifar M. 2019. Nonionic but water soluble, [Glycine-Pd-Alanine] and [Glycine-Pd-Valine] complexes. Their synthesis, characterization, antitumor activities and rich DNA/HSA interaction studies. J. Biomol. Struct. Dyn. 37: 3566-3582. https://doi.org/10.1080/07391102.2018.1520647
  52. Nesovic-Ostojic J, Kovacevic S, Spasic S, Lopicic S, Todorovic J, Dincic M, et al. 2019. Modulation of luminal L-alanine transport in proximal tubular cells of frog kidney induced by low micromolar $Cd^{2+}$ concentration. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 216: 38-42. https://doi.org/10.1016/j.cbpc.2018.11.007
  53. Fan Y, Yan G, Liu F, Rong J, Ma W, Yang D, Yu Y. 2019. Potential role of poly (ADP-ribose) polymerase in delayed cerebral vasospasm following subarachnoid hemorrhage in rats. Exp. Ther. Med. 17, 1290-1299.
  54. Slepokura K, Lis T. 2010. Dihydroxyacetone phosphate, DHAP, in the crystalline state: monomeric and dimeric forms. Carbohydr. Res. 345: 512-529. https://doi.org/10.1016/j.carres.2009.12.008
  55. Moreno-Montoro M, Olalla-Herrera M, Angel Rufian-Henares J, Gimenez Martinez R, Miralles B, Bergillos T, et al. 2017. Antioxidant, ACE-inhibitory and antimicrobial activity of fermented goat milk: activity and physicochemical property relationship of the peptide components. Food Funct. 8: 2783-2791. https://doi.org/10.1039/C7FO00666G
  56. Gonzalez-Gonzalez CR, Tuohy KM, Jauregi P. 2011. Production of angiotensin-I-converting enzyme (ACE) inhibitory activity in milk fermented with probiotic strains: effects of calcium, pH and peptides on the ACE-inhibitory activity. Int. Dairy J. 21: 615-622. https://doi.org/10.1016/j.idairyj.2011.04.001
  57. Amorim FG, Coitinho LB, Dias AT, Friques AGF, Monteiro BL, Rezende LCDD, et al. 2019. Identification of new bioactive peptides from Kefir milk through proteopeptidomics: Bioprospection of antihypertensive molecules. Food Chem. 282: 109-119. https://doi.org/10.1016/j.foodchem.2019.01.010
  58. Abdel-Hamid M, Romeih E, Gamba RR, Nagai E, Suzuki T, Koyanagi T, et al. 2019. The biological activity of fermented milk produced by Lactobacillus casei ATCC 393 during cold storage. Int. Dairy J. 91: 1-8. https://doi.org/10.1016/j.idairyj.2018.12.007
  59. Yeo S, Liong M. 2010. Angiotensin I-converting enzyme inhibitory activity and bioconversion of isoflavones by probiotics in soymilk supplemented with prebiotics. Int. J. Food Sci. Nutr. 61: 161-181. https://doi.org/10.3109/09637480903348122
  60. Donkor OHAV. 2007. Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of viability and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. Le. Lait. 87: 21-38. https://doi.org/10.1051/lait:2006023
  61. Nejati F, Rizzello CG, Di CR, Sheikh-Zeinoddin M, Diviccaro A, Minervini F, et al. 2013. Manufacture of a functional fermented milk enriched of Angiotensin-I Converting Enzyme (ACE)-inhibitory peptides and gamma-amino butyric acid (GABA). LWT-Food Sci. Technol. 51: 183-189. https://doi.org/10.1016/j.lwt.2012.09.017
  62. Hagi T, Kobayashi M, Nomura M. 2016. Metabolome analysis of milk fermented by $\gamma$-aminobutyric acid-producing Lactococcus lactis. J. Dairy Sci. 99: 994-1001. https://doi.org/10.3168/jds.2015-9945

Cited by

  1. Bio-functional properties of probiotic Lactobacillus: current applications and research perspectives vol.61, pp.13, 2020, https://doi.org/10.1080/10408398.2020.1774496
  2. Safety Assessment of Lactiplantibacillus (formerly Lactobacillus) plantarum Q180 vol.31, pp.10, 2021, https://doi.org/10.4014/jmb.2106.06066