• Title/Summary/Keyword: C-domain

Search Result 2,113, Processing Time 0.037 seconds

INVARIANCE OF DOMAIN THEOREM FOR DEMICONTINUOUS MAPPINGS OF TYPE ( $S_+$)

  • Park, Jong-An
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.81-87
    • /
    • 1992
  • Wellknown invariance of domain theorems are Brower's invariance of domain theorem for continuous mappings defined on a finite dimensional space and Schauder-Leray's invariance of domain theorem for the class of mappings I+C defined on a infinite dimensional Banach space with I the identity and C compact. The two classical invariance of domain theorems were proved by applying the homotopy invariance of Brower's degree and Leray-Schauder's degree respectively. Degree theory for some class of mappings is a useful tool for mapping theorems. And mapping theorems (or surjectivity theorems of mappings) are closely related with invariance of domain theorems for mappings. In[4, 5], Browder and Petryshyn constructed a multi-valued degree theory for A-proper mappings. From this degree Petryshyn [9] obtained some invariance of domain theorems for locally A-proper mappings. Recently Browder [6] has developed a degree theory for demicontinuous mapings of type ( $S_{+}$) from a reflexive Banach space X to its dual $X^{*}$. By applying this degree we obtain some invariance of domain theorems for demicontinuous mappings of type ( $S_{+}$). ( $S_{+}$).

  • PDF

ON t-ALMOST DEDEKIND GRADED DOMAINS

  • Chang, Gyu Whan;Oh, Dong Yeol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1969-1980
    • /
    • 2017
  • Let ${\Gamma}$ be a nonzero torsionless commutative cancellative monoid with quotient group ${\langle}{\Gamma}{\rangle}$, $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be a graded integral domain graded by ${\Gamma}$ such that $R_{{\alpha}}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma},H$ be the set of nonzero homogeneous elements of R, C(f) be the ideal of R generated by the homogeneous components of $f{\in}R$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. In this paper, we introduce the notion of graded t-almost Dedekind domains. We then show that R is a t-almost Dedekind domain if and only if R is a graded t-almost Dedekind domain and RH is a t-almost Dedekind domains. We also show that if $R=D[{\Gamma}]$ is the monoid domain of ${\Gamma}$ over an integral domain D, then R is a graded t-almost Dedekind domain if and only if D and ${\Gamma}$ are t-almost Dedekind, if and only if $R_{N(H)}$ is an almost Dedekind domain. In particular, if ${\langle}{\Gamma}{\rangle}$ isatisfies the ascending chain condition on its cyclic subgroups, then $R=D[{\Gamma}]$ is a t-almost Dedekind domain if and only if R is a graded t-almost Dedekind domain.

Domain Expression of ErmSF, MLS (macrolide-lincosamide-streptogramin B) Antibiotic Resistance Factor Protein (MLS (macrolide-lincosamide-streptogramin B) 항생제 내성인자 단백질인 ErmSF의 domain발현)

  • 진형종
    • Korean Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.245-252
    • /
    • 2001
  • Erm proteins, MLS (macrolide-lincosamide-streptogramin B) resistance factor proteins, show high degree of amino acid sequence homology and comprise of a group of structurally homologous N-methyltransferases. On the basis of the recently determined structures of ErmC` and ErmAM, ErmSF was divided into two domains, N-terminal end catalytic domain and C-terminal end substrate binding domain and attempted to overexpress catalytic domain in E. coli using various pET expression systems. Three DNA fragments were used to express the catalytic domain: DNA fragment 1 encoding Met 1 through Glu 186, DNA fragment 2 encoding Arg 60 to Glu 186 and DNA fragment 3 encoding Arg 60 through Arg 240. Among the pET expression vectors used, pET 19b successfully expressed the DNA fragment 3 and pET23b succeeded in expression of DNA fragment 1 and 2. But the overexpressed catalytic domains existed as inclusion body, a insoluble aggregate. To assist the soluble expression of ErmSF catalytic domains, Coexpression of chaperone GroESL or Thioredoxin and lowering the incubation temperature to $22^{\circ}C$ were attempted, as did in the soluble expression of the whole ErmSF protein. Both strategies did not seem to be helpful. Solubilization with guanidine-HCl and renaturation with gradual removal of denaturant and partial digestion of overexpressed whole ErmSF protein (expressed to the level of 126 mg/ι culture as a soluble protein) with proteinase K, nonspecific proteinase are under way.

  • PDF

KRONECKER FUNCTION RINGS AND PRÜFER-LIKE DOMAINS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.371-379
    • /
    • 2012
  • Let D be an integral domain, $\bar{D}$ be the integral closure of D, * be a star operation of finite character on D, $*_w$ be the so-called $*_w$-operation on D induced by *, X be an indeterminate over D, $N_*=\{f{\in}D[X]{\mid}c(f)^*=D\}$, and $Kr(D,*)=\{0\}{\cup}\{\frac{f}{g}{\mid}0{\neq}f,\;g{\in}D[X]$ and there is an $0{\neq}h{\in}D[X]$ such that $(c(f)c(h))^*{\subseteq}(c(g)c(h))^*$}. In this paper, we show that D is a *-quasi-Pr$\ddot{u}$fer domain if and only if $\bar{D}[X]_{N_*}=Kr(D,*_w)$. As a corollary, we recover Fontana-Jara-Santos's result that D is a Pr$\ddot{u}$fer *-multiplication domain if and only if $D[X]_{N_*} = Kr(D,*_w)$.

Functional analysis of RNA motifs essential for BC200 RNA-mediated translational regulation

  • Jang, Seonghui;Shin, Heegwon;Lee, Younghoon
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.94-99
    • /
    • 2020
  • Brain cytoplasmic 200 RNA (BC200 RNA) is proposed to act as a local translational modulator by inhibiting translation after being targeted to neuronal dendrites. However, the mechanism by which BC200 RNA inhibits translation is not fully understood. Although a detailed functional analysis of RNA motifs is essential for understanding the BC200 RNA-mediated translation-inhibition mechanism, there is little relevant research on the subject. Here, we performed a systematic domain-dissection analysis of BC200 RNA to identify functional RNA motifs responsible for its translational-inhibition activity. Various RNA variants were assayed for their ability to inhibit translation of luciferase mRNA in vitro. We found that the 111-200-nucleotide region consisting of part of the Alu domain as well as the A/C-rich domain (consisting of both the A-rich and C-rich domains) is most effective for translation inhibition. Surprisingly, we also found that individual A-rich, A/C-rich, and Alu domains can enhance translation but at different levels for each domain, and that these enhancing effects manifest as cap-dependent translation.

Detecting Cyber Threats Domains Based on DNS Traffic (DNS 트래픽 기반의 사이버 위협 도메인 탐지)

  • Lim, Sun-Hee;Kim, Jong-Hyun;Lee, Byung-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.11
    • /
    • pp.1082-1089
    • /
    • 2012
  • Recent malicious attempts in Cyber space are intended to emerge national threats such as Suxnet as well as to get financial benefits through a large pool of comprised botnets. The evolved botnets use the Domain Name System(DNS) to communicate with the C&C server and zombies. DNS is one of the core and most important components of the Internet and DNS traffic are continually increased by the popular wireless Internet service. On the other hand, domain names are popular for malicious use. This paper studies on DNS-based cyber threats domain detection by data classification based on supervised learning. Furthermore, the developed cyber threats domain detection system using DNS traffic analysis provides collection, analysis, and normal/abnormal domain classification of huge amounts of DNS data.

ON CHARACTERIZATIONS OF PRÜFER v-MULTIPLICATION DOMAINS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.335-342
    • /
    • 2010
  • Let D be an integral domain with quotient field K,$\mathcal{I}(D)$ be the set of nonzero ideals of D, and $w$ be the star-operation on D defined by $I_w=\{x{\in}K{\mid}xJ{\subseteq}I$ for some $J{\in}\mathcal{I}(D)$ such that J is finitely generated and $J^{-1}=D\}$. The D is called a Pr$\ddot{u}$fer $v$-multiplication domain if $(II^{-1})_w=D$ for all nonzero finitely generated ideals I of D. In this paper, we show that D is a Pr$\ddot{u}$fer $v$-multiplication domain if and only if $(A{\cap}(B+C))_w=((A{\cap}B)+(A{\cap}C))_w$ for all $A,B,C{\in}\mathcal{I}(D)$, if and only if $(A(B{\cap}C))_w=(AB{\cap}AC)_w$ for all $A,B,C{\in}\mathcal{I}(D)$, if and only if $((A+B)(A{\cap}B))_w=(AB)_w$ for all $A,B{\in}\mathcal{I}(D)$, if and only if $((A+B):C)_w=((A:C)+(B:C))_w$ for all $A,B,C{\in}\mathcal{I}(D)$ with C finitely generated, if and only if $((a:b)+(b:a))_w=D$ for all nonzero $a,b{\in}D$, if and only if $(A:(B{\cap}C))_w=((A:B)+(A:C))_w$ for all $A,B,C{\in}\mathcal{I}(D)$ with B, C finitely generated.

RRM but not the Asp/Glu domain of hnRNP C1/C2 is required for splicing regulation of Ron exon 11 pre-mRNA

  • Moon, Heegyum;Jang, Ha Na;Liu, Yongchao;Choi, Namjeong;Oh, Jagyeong;Ha, Jiyeon;Kim, Hyeon Ho;Zheng, Xuexiu;Shen, Haihong
    • BMB Reports
    • /
    • v.52 no.11
    • /
    • pp.641-646
    • /
    • 2019
  • The Ron proto-oncogene is a human receptor for macrophage-stimulating protein (MSP). The exclusion of exon 11 in alternative splicing generates ${\Delta}RON$ protein that is constitutively activated. Heterogenous ribonucleaoprotein (hnRNP) $C_1/C_2$ is one of the most abundant proteins in cells. In this manuscript, we showed that both hnRNP $C_1$ and $C_2$ promoted exon 11 inclusion of Ron pre-mRNA and that hnRNP $C_1$ and hnRNP $C_2$ functioned independently but not cooperatively. Moreover, hnRNP $C_1$ stimulated exon 11 splicing through intron 10 activation but not through intron 11 splicing. Furthermore, we showed that, whereas the RRM domain was required for hnRNP $C_1$ function, the Asp/Glu domain was not. In conclusion, hnRNP $C_1/C_2$ promoted exon 11 splicing independently by stimulating intron 10 splicing through RRM but not through the Asp/Glu domain.

Engineering and Characterization of the Isolated C-Terminal Domain of 5-Enolpyruvylshikimate-3-phosphate (EPSP) Synthase

  • Kim, Hak-Jun;Kim, Hyun-Woo;Kang, Sung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1385-1389
    • /
    • 2007
  • 5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the formation of EPSP and inorganic phosphate from shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP) in the biosynthesis of aromatic amino acids. To delineate the domain-specific function, we successfully isolated the discontinuous C-terminal domain (residues 1-21, linkers, 240-427) of EPSP synthase (427 residues) by site-directed mutagenesis. The engineered C-terminal domains containing no linker (CTD), or with gly-gly ($CTD^{GG}$) and gly-ser-ser-gly ($CTD^{GSSG}$) linkers were purified and characterized as having distinct native-like secondary and tertiary structures. However, isothermal titration calorimetry (ITC), $^{15}N-HSQC$,\;and\;^{31}P-NMR$ revealed that neither its substrate nor inhibitor binds the isolated domain. The isolated domain maintained structural integrity, but did not function as the half of the full-length protein.

Analysis of the Involvement of Chitin-Binding Domain of ChiCW in Antifungal Activity, and Engineering a Novel Chimeric Chitinase with High Enzyme and Antifungal Activities

  • Huang, Chien-Jui;Guo, Shu-Huei;Chung, Shu-Chun;Lin, Yu-Ju;Chen, Chao-Ying
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1169-1175
    • /
    • 2009
  • An antifungal chitinase, ChiCW, produced by Bacillus cereus 28-9 is effective against conidial germination of Botrytis elliptica, the causal agent of lily leaf blight. ChiCW as a modular enzyme consists of a signal peptide, a catalytic domain, a fibronectin type-III-like domain, and a chitin-binding domain. When two C-terminal domains of ChiCW were truncated, $ChiCW{\Delta}FC$ (lacking the chitin-binding domain and fibronectin type III-like domain) lost its antifungal activity. Since $ChiCW{\Delta}C$ (lacking the chitin-binding domain) could not be expressed in Escherichia coli as $ChiCW{\Delta}FC$ did, a different strategy based on protein engineering technology was designed to investigate the involvement of the chitin-binding domain of ChiCW ($ChBD_{ChiCW}$) in antifungal activity in this study. Because ChiA1 of Bacillus circulans WL-12 is a modular enzyme with a higher hydrolytic activity than ChiCW but not inhibitory to conidial germination of Bo. elliptica and the similar domain composition of ChiA1 and ChiCW, the C-terminal truncated derivatives of ChiA1 were generated and used to construct chimeric chitinases with $ChBD_{ChiCW}$. When the chitin-binding domain of ChiA1 was replaced with $ChBD_{ChiCW}$, the chimeric chitinase named ChiAAAW exhibited both high enzyme activity and antifungal activity. The results indicate that $ChBD_{ChiCW}$ may play an important role in the antifungal activity of ChiCW.