DOI QR코드

DOI QR Code

Analysis of the Involvement of Chitin-Binding Domain of ChiCW in Antifungal Activity, and Engineering a Novel Chimeric Chitinase with High Enzyme and Antifungal Activities

  • Huang, Chien-Jui (Department of Plant Pathology and Microbiology, National Taiwan University) ;
  • Guo, Shu-Huei (Department of Plant Pathology and Microbiology, National Taiwan University) ;
  • Chung, Shu-Chun (Department of Plant Pathology and Microbiology, National Taiwan University) ;
  • Lin, Yu-Ju (Department of Plant Pathology and Microbiology, National Taiwan University) ;
  • Chen, Chao-Ying (Department of Plant Pathology and Microbiology, National Taiwan University)
  • Published : 2009.10.31

Abstract

An antifungal chitinase, ChiCW, produced by Bacillus cereus 28-9 is effective against conidial germination of Botrytis elliptica, the causal agent of lily leaf blight. ChiCW as a modular enzyme consists of a signal peptide, a catalytic domain, a fibronectin type-III-like domain, and a chitin-binding domain. When two C-terminal domains of ChiCW were truncated, $ChiCW{\Delta}FC$ (lacking the chitin-binding domain and fibronectin type III-like domain) lost its antifungal activity. Since $ChiCW{\Delta}C$ (lacking the chitin-binding domain) could not be expressed in Escherichia coli as $ChiCW{\Delta}FC$ did, a different strategy based on protein engineering technology was designed to investigate the involvement of the chitin-binding domain of ChiCW ($ChBD_{ChiCW}$) in antifungal activity in this study. Because ChiA1 of Bacillus circulans WL-12 is a modular enzyme with a higher hydrolytic activity than ChiCW but not inhibitory to conidial germination of Bo. elliptica and the similar domain composition of ChiA1 and ChiCW, the C-terminal truncated derivatives of ChiA1 were generated and used to construct chimeric chitinases with $ChBD_{ChiCW}$. When the chitin-binding domain of ChiA1 was replaced with $ChBD_{ChiCW}$, the chimeric chitinase named ChiAAAW exhibited both high enzyme activity and antifungal activity. The results indicate that $ChBD_{ChiCW}$ may play an important role in the antifungal activity of ChiCW.

Keywords

References

  1. Beguin, P. 1999. Hybrid enzymes. Curr. Opin. Biotechnol. 10:336-340 https://doi.org/10.1016/S0958-1669(99)80061-5
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Chen, C. T., C. J. Huang, Y. H. Wang, and C. Y. Chen. 2004. Two-step purification of Bacillus circulans chitinase A1 expressed in Escherichia coli periplasm. Protein Expr. Purif. 37:27-31 https://doi.org/10.1016/j.pep.2004.03.017
  4. Garc$\acute{i}$a, I., Jos$\acute{e}$. M. Lora, Jes$\acute{u}$s. De la Cruz, Tah$\acute{i}$a Ben$\acute{i}$tez, A. Llobell, and Jos$\acute{e}$. A. Pintor-Toro. 1994. Cloning and characterization of a chitinase (CHIT42) cDNA from the mycoparasitic fungus Trichoderma harzianum. Curr. Genet. 27: 83-89 https://doi.org/10.1007/BF00326583
  5. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580 https://doi.org/10.1016/S0022-2836(83)80284-8
  6. Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280:309-316
  7. Henrissat, B. and A. Bairoch. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781-788
  8. Huang, C. J. and C. Y. Chen. 2005. High-level expression and characterization of two chitinases, ChiCH and ChiCW, of Bacillus cereus 28-9 in Escherichia coli. Biochem. Biophys. Res. Commun. 327: 8-17 https://doi.org/10.1016/j.bbrc.2004.11.140
  9. Huang, C. J., T. K. Wang, S. C. Chung, and C. Y. Chen. 2005. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J. Biochem. Mol. Biol. 38: 82-88 https://doi.org/10.5483/BMBRep.2005.38.1.082
  10. Huang, C. J. and C. Y. Chen. 2006 Functions of the C-terminal region of chitinase ChiCW from Bacillus cereus 28-9 in substrate-binding and hydrolysis of chitin. J. Microbiol. Biotechnol. 16: 1897-1903
  11. Imoto, T. and K. Yogishita. 1971. A simple activity measurement of lysozyme. Agric. Biol. Chem. 35: 1154-1156 https://doi.org/10.1271/bbb1961.35.1154
  12. Itoh, Y., T. Kawase, N. Nikaidou, H. Fukada, M. Mitsutomi, T. Watanabe, and Y. Itoh. 2002. Functional analysis of the chitinbinding domain of a family 19 chitinase from Streptomyces griseus HUT6037: Substrate-binding affinity and cis-dominant increase of antifungal function. Biosci. Biotechnol. Biochem. 66:1084-1092 https://doi.org/10.1271/bbb.66.1084
  13. Itoh, Y., J. Watanabe, H. Fukada, R. Mizuno, Y. Kezuka, T. Nonaka, and T. Watanabe. 2006. Importance of Trp59 and Trp60 in chitin-binding, hydrolytic, and antifungal activities of Streptomyces griseus chitinase C. Appl. Microbiol. Biotechnol. 72: 1176-1184 https://doi.org/10.1007/s00253-006-0405-7
  14. Lim$\acute{o}$n, M. C., Jos$\acute{e}$ A. Pintor-Toro, and Tah$\acute{i}$a. Ben$\acute{i}$tez. 1999. Increased antifungal activity of Trichoderma harzianum transformants that overexpress a 33-kDa chitinase. Phytopathology 89: 254-261 https://doi.org/10.1094/PHYTO.1999.89.3.254
  15. Limon, M. C., E. Margolles-Clark, T. Benitez, and M. Penttila. 2001. Addition of substrate-binding domains increases substratebinding capacity and specific activity of a chitinase from Trichoderma harzianum. FEMS Microbiol. Lett. 198: 57-63
  16. Lim$\acute{o}$n, M. C., M. R. Chac$\acute{o$n, R. Mej$\acute{i$as, J. Delgado-Jarana, A. M. Rinc$\acute{o$n, A. C. Cod$\acute{o$n, and T. Ben$\acute{i}$tez. 2004. Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Appl. Microbiol. Biotechnol. 64: 675-685 https://doi.org/10.1007/s00253-003-1538-6
  17. Manoil, C. and J. Beckwith. 1986. A genetic approach to analyzing membrane protein topology. Science 233: 1403-1408 https://doi.org/10.1126/science.3529391
  18. Morimoto, K., S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 1997. Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain. J. Bacteriol. 179: 7306-7314
  19. Nixon, A. E., M. Ostermeier, and S. Benkovic. 1998. Hybrid enzymes: Manipulating enzyme design. Trends Biotechnol. 16:258-264 https://doi.org/10.1016/S0167-7799(98)01204-9
  20. Ohno, T., S. Armand, T. Hata, N. Nikaidou, B. Henrissat, M. Mitsutomi, and T. Watanabe. 1996. A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT6037. J. Bacteriol. 178: 5065-5070
  21. Ulmer, K. M. 1983. Protein engineering. Science 219: 666-671 https://doi.org/10.1126/science.6572017
  22. Wang, F. P., Q. Li, Y. Zhou, M. G. Li, and X. Xiao. 2003. The C-terminal module of Chi1 from Aeromonas caviae CB101 has a function in substrate binding and hydrolysis. Proteins 53:908-916 https://doi.org/10.1002/prot.10501
  23. Watanabe, T., K. Suzuki, W. Oyanagi, K. Ohnishi, and H. Tanaka. 1990. Gene cloning of chitinase A1 from Bacillus circulans WL-12 revealed its evolutionary relationship to Serratia chitinase and to the type III homology units of fibronectin. J. Biol. Chem. 265: 15659-15665
  24. Watanabe, T., Y. Ito, T. Yamada, M. Hashimoto, S. Sekine, and H. Tanaka. 1994. The roles of the C-terminal domain and type III domains of chitinase Al from Bacillus circulans WL-12 in chitin degradation. J. Bacteriol. 176: 4465-4472

Cited by

  1. Functional analysis of the fungal/plant class chitinase family in Aspergillus fumigatus vol.48, pp.4, 2009, https://doi.org/10.1016/j.fgb.2010.12.007
  2. Molecular Docking and Site-directed Mutagenesis of a Bacillus thuringiensis Chitinase to Improve Chitinolytic, Synergistic Lepidopteran-larvicidal and Nematicidal Activities vol.11, pp.3, 2009, https://doi.org/10.7150/ijbs.10632