Domain Expression of ErmSF, MLS (macrolide-lincosamide-streptogramin B) Antibiotic Resistance Factor Protein

MLS (macrolide-lincosamide-streptogramin B) 항생제 내성인자 단백질인 ErmSF의 domain발현

  • 진형종 (수원대학교 자연과학대학 유전공학과)
  • Published : 2001.12.01

Abstract

Erm proteins, MLS (macrolide-lincosamide-streptogramin B) resistance factor proteins, show high degree of amino acid sequence homology and comprise of a group of structurally homologous N-methyltransferases. On the basis of the recently determined structures of ErmC` and ErmAM, ErmSF was divided into two domains, N-terminal end catalytic domain and C-terminal end substrate binding domain and attempted to overexpress catalytic domain in E. coli using various pET expression systems. Three DNA fragments were used to express the catalytic domain: DNA fragment 1 encoding Met 1 through Glu 186, DNA fragment 2 encoding Arg 60 to Glu 186 and DNA fragment 3 encoding Arg 60 through Arg 240. Among the pET expression vectors used, pET 19b successfully expressed the DNA fragment 3 and pET23b succeeded in expression of DNA fragment 1 and 2. But the overexpressed catalytic domains existed as inclusion body, a insoluble aggregate. To assist the soluble expression of ErmSF catalytic domains, Coexpression of chaperone GroESL or Thioredoxin and lowering the incubation temperature to $22^{\circ}C$ were attempted, as did in the soluble expression of the whole ErmSF protein. Both strategies did not seem to be helpful. Solubilization with guanidine-HCl and renaturation with gradual removal of denaturant and partial digestion of overexpressed whole ErmSF protein (expressed to the level of 126 mg/ι culture as a soluble protein) with proteinase K, nonspecific proteinase are under way.

MLS (macrolide-lincosamide-streptogramin B) 항생제 내성인자 단백질인 Erm 단백질들은 아미노산 서열 중 그 동일성과 유사성이 높아 구조적으로도 동등한 단백질의 한 집단을 형성한다. 최근 X-ray crystallography에 의해 구조가 결정된 ErmC\` 및 ErmAM 단백질의 구조에 근거하여 ErmSF 단백질도 catalytic domain과 substrate binding domain으로 구분하였고 N-terminal end에 존재하는 catalytic domain의 대량생산을 다양한 pET 발현 vector를 사용하여 시도하였다. 그리고 catalytic domain을 coding하는 DNA 절편은 세 종류를 사용하였다: DNA 절편 1은 Met 1부터 Glu 186까지를 coding하고 DNA 절편 2는 Arg 60부터 Glu 186까지의 정보를 가진 DNA이고 DNA 절편 3은 Arg 60부터 Arg 240까지를 encoding하는 DNA이다. 사용된 다양한 발현 vector중에서 pET19b는 DNA 절편 3, pET23b는 DNA 절편 1과 2를 성공적으로 대량생산하였다. 그러나 대량생산된 catalytic domain들은 불용성 단백질 집합체인 inclusion body를 형성하였다. ErmSF catalytic domain들의 용해성 단백질의 생산을 위하여 chaperone GroESL과 Thioredoxin의 동시 발현 및 배양온도를 $22^{\circ}C$로 낮추어 시도했으나 대량 발현된 단백질의 용해에는 도움을 얻지 못하였다.

Keywords

References

  1. Biochemistry v.37 Crystal Structure of ErmC, an rRNA methyltransferase which mediates antibiotic resistance in bacteria Bussiere, D.E.;S.W. Muchmore;C.G. Dealwis;G. Schluckebier;V.L. Nienaber;R.P. Eadji;K.A. Walter;U.S. Ladror;T.F. Holzman;C. Abad-Zapatero
  2. Curr. Opin. Microbiol. v.2 Recent developments in macrolides and ketolides Chu, D.T.W.
  3. J. Antimicrob. Chemother. v.39 Inhibition of protein synthesis by streptogramins and related antibiotics Cocito, C.;M.D. Giambattisata;E. Nyssen;P. Vannffel
  4. Annu. Rev. Microbiol. v.43 How antibiotic-producing organisms avoid suicide Cundliffe, E.
  5. RNA v.5 Core sequence in the RNA motif recognized by the ErmE methyltransferase revealed by relaxing the fidelity of the enzyme for its target Hansen, L.H.;B. Vester;S. Douthwaite
  6. Mol. Cells. v.9 ermSF, a ribosomal RNA adenine N6-methyltransferase gene from Streptomyces fradiae, confers MLS(macrolide-lincosamide- streptogramin B) resistance to E. coli when it is expressed Jin, H.J.
  7. Biochemistry. v.34 Methylation of minimalist 23S rRNA sequence in vitro by ErmSF(TlrA)N-methyltransferase Kovalic, D.;R.B. Giannattasio;B. Weisblum
  8. J. Bacteriol. v.176 23S rRNA Domain V, a fragment that can be specifically methylated in vitro by the ErmSF(TlrA) methyltransferase Kovalic, D.;R.B. Giannattasio;H.J. Jin;B. Weisblum
  9. Nucleic Acid Res. v.19 General method for direct cloning of DNA fragments generated by the polymerase chain reaction Kovalic, D.;J.H. Kwak;B. Weisblum
  10. Nature v.227 Cleavage of structural proteins during the assembly of the head of bacteriophage T. Laemmli, U.K.
  11. J. Mol. Biol. v.74 Alteration of 23 S ribosomal RNA and erythromycin-induced resisitance to lincomycin and spiramycin in Staphylococcus aureus Lai, C.J.;B. Weisblum;S.R. Fahnestock;M. Nomura
  12. J. Mol. Biol. v.241 The DIM1 gene resposible for the conserved m62Am62 dimethylation in the 3-terminal loop of 18S rRNA is essential in yeast Lafontaine, E.;J. Delcour;A.-L. Glasser;J. Desgres;J. Vanderhaute
  13. Microbiol. Rev. v.60 Strategies for achieving high-level expression of genes in Escherichia-coli Markrides, S.C.
  14. Nature v.258 Metal chelate affinity chromatography, a new approach to protein fractionation Porath, J.;J. Carlsson;L. Olsson;G. Belfrage
  15. J. Mol. Biol. v.289 The 2.2 Ao Structure of the rRNA methyltransferase ErmC' and its complexes with cofactor and cofactor analogs: implication for the reaction mechanism Schluckebier, G.;P. Zhong;K.D. Stewart;T.J. Kavanaugh;C. Abad-Zapatero
  16. Antimicrob. Agnets Chemother. v.42 A novel erythromycin resistance gene(erm TR) in Streptococcus pyrogenes Seppala, H;M. Skurnik;H. Soini;M. C. Robertserm;P. Huovinen
  17. Anal. Biochem. v.116 Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in range from 1 to 100 kDa. Schagger, H.;G. V. Jagow
  18. J. Biol. Chem. v.258 Site for Action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics Skinner, R.;E. Cundliffe;F.J. Schmidt
  19. J. Mol. Biol. v.282 ErmE methyltransferase recognition elements in RNA substrates Vester, B.;A.K. Nielsen;L.H. Hansen;S. Douthwaite
  20. J. Bacteriol. v.176 Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methytransferase Vester, B.;S. Douthewaite
  21. J. Mol. Biol. v.286 ErmE methyltransferase recognize features of the primary and secondary and structure in a motif within domain V of 23S rRNA Villsen, I.D.;B. Vester;S. Douthwaite
  22. Antimicrob. Agents Chemother. v.39 Erythromycin resistance by ribosome modification Weisblum, B.
  23. J. Biol. Chem. v.43 Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin Yasukawa, T.;C. Kanei-Ishii;T. Maekawa;J. Fujimoto;T. Yamamoto;S. Ishii
  24. Nature Struct. Biol. v.4 Solution structure of an rRNA methyltransferase(ErmAM) that confers macrolide-lin-cosamide-strepto gramin antibiotic resistance Yu, L.;A.M. Petros;A. Schnuchel;P. Zhong;J.M. Severin;K. Walter;T.F. Holzman;S.W. Fesik
  25. J. Bacteriol. v.171 Methylation of 23S rRNA by tlrA(ermSF), a tylosin resistance determinant from Streptomyces fradiae Zalacain, M.;E. Cundliffe
  26. J. Bacteriol. v.177 Substrate requirements for ErmC methyltransferase activity Zhong, P.;S.D. Pratt;R.P. Edalji;K. Walter;T.F. Holzman;A.G. Shvakumar;L. Katz