Browse > Article

Engineering and Characterization of the Isolated C-Terminal Domain of 5-Enolpyruvylshikimate-3-phosphate (EPSP) Synthase  

Kim, Hak-Jun (Department of Applied Polar Science, Korea Polar Research Institute)
Kim, Hyun-Woo (Department of Marine Biology, Pukyong National University)
Kang, Sung-Ho (Department of Applied Polar Science, Korea Polar Research Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.8, 2007 , pp. 1385-1389 More about this Journal
Abstract
5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the formation of EPSP and inorganic phosphate from shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP) in the biosynthesis of aromatic amino acids. To delineate the domain-specific function, we successfully isolated the discontinuous C-terminal domain (residues 1-21, linkers, 240-427) of EPSP synthase (427 residues) by site-directed mutagenesis. The engineered C-terminal domains containing no linker (CTD), or with gly-gly ($CTD^{GG}$) and gly-ser-ser-gly ($CTD^{GSSG}$) linkers were purified and characterized as having distinct native-like secondary and tertiary structures. However, isothermal titration calorimetry (ITC), $^{15}N-HSQC$,\;and\;^{31}P-NMR$ revealed that neither its substrate nor inhibitor binds the isolated domain. The isolated domain maintained structural integrity, but did not function as the half of the full-length protein.
Keywords
EPSP synthase; herbicide; glyphosate; protein engineering; isothermal titration calorimetry;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Eschenburg, S., M. L. Healy, M. A. Priestman, G. H. Lushington, and E. Schonbrunn. 2002. How the mutation glycine96 to alanine confers glyphosate insensitivity to 5- enolpyruvyl shikimate-3-phosphate synthase from Escherichia coli. Planta 216: 129-135   DOI   ScienceOn
2 Haslam, E. 1993. Shikimic Acid: Metabolism and Metabolites. John Wiley, Chichester
3 Park, H. J., J. L. Hilsenbeck, H. J. Kim, W. A. Shuttleworth, Y. H. Park, J. N. S. Evans, and C. H. Kang. 2004. Structural studies of Strpetococcus pneumoniae EPSP synthase in unliganded state, tetrahedral intermediate-bound state and S3P-GLP-bound state. Mol. Microbiol. 51: 963-971   DOI   ScienceOn
4 Stauffer, M. E., J. K. Young, and J. N. Evans. 2001. Shikimate-3-phosphate binds to the isolated N-terminal domain of 5-enolpyruvylshikimate-3-phosphate synthase. Biochemistry 40: 3951-3957   DOI   ScienceOn
5 Stauffer, M. E., J. K. Young, G. L. Helms, and J. N. Evans. 2001. Sequential assignments of the isolated N-terminal domain of 5-enolpyruvylshikimate-3-phosphate synthase. J. Biomol. NMR 20: 387-388   DOI   ScienceOn
6 Yon, J. M., D. Perahia, and C. Ghelis. 1998. Conformational dynamics and enzyme activity. Biochimie 80: 33-42   DOI   ScienceOn
7 Anderson, K. S., J. A. Sikorski, and K. A. Johnson. 1988. A tetrahedral intermediate in the EPSP synthase reaction observed by rapid quench kinetics. Biochemistry 27: 7395-7406   DOI   ScienceOn
8 Hwang, E. I., B. S. Yun, S. W. Choi, J. S. Kim, S. J. Lim, J. S. Moon, S. H. Lee, and S. U. Kim. 2005. Isolation of sangivamycin from Streptomyces sp. A6497 and its herbicidal activity. J. Microbiol. Biotechnol. 15: 434-437   과학기술학회마을
9 Krekel, F., C. Oecking, N. Amrhein, and P. Macheroux. 1999. Substrate and inhibitor-induced conformational changes in the structurally related enzymes UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS). Biochemistry 38: 8864- 8878   DOI   ScienceOn
10 Kim, Y.-H., S. J. Choi, H.-A. Lee, and T. W. Moon. 2006. Quantitation of CP4 5-enolpyruvylshikimate-3-phosphate synthase in soybean by two-dimensional gel electrophoresis. J. Microbiol. Biotechnol. 16: 25-31   과학기술학회마을
11 Roberts, F., C. W. Roberts, R. E. Lyons, M. J. Kiristis, E. J. Mui, J. Finnerty, J. J. Johnson, D. J. Ferguson, J. R. Coggins, T. Krell, G. H. Coombs, W. K. Milhous, D. E. Kyle, S. Tzipori, J. Barnwell, J. B. Dame, J. Carlton, and R. McLeod. 2002. The shikimate pathway and its branches in apicomplexan parasites. J. Infec. Dis. 185: 25-36   DOI
12 Stauffer, M. E., J. K. Young, G. L. Helms, and J. N. Evans. 2001. Chemical shift mapping of shikimate-3-phosphate binding to the isolated N-terminal domain of 5-enolpyruvylshikimate- 3-phosphate synthase. FEBS Lett. 499: 182-186   DOI
13 Kim, H. J., J. K. Young, G. L. Helms, and J. N. Evans. 2002. Letter to the editor: $^1H$, TEX>$^{13}C$, and $^{15}N$ backbone resonance assignments of the C-terminal domain of 5- enolpyruvylshikimate-3-phosphate synthase. J. Biomol. NMR 24: 269-270   DOI   ScienceOn
14 Lee, S.-H., S.-H. Kang, Y.-H. Park, D.-M. Min, and Y.-M. Kim. 2006. Quantitative analysis of two genetically modified maize lines by real-time PCR. J. Microbiol. Biotechnol. 16: 205-211   과학기술학회마을
15 Franz, J., M. K. Mao, and Sikorski, J. A. 1997. Glyphosate: A Unique Global Herbicide. Oxford Univ. Press, New York
16 Stallings, W. C., S. S. Abdelmeguid, L. W. Lim, H. S. Shieh, H. E. Dayringer, N. K. Leimgruber, R. A. Stegeman, K. S. Anderson, J. A. Sikorski, S. R. Padgette, and G. M. Kishore. 1991. Structure and topological symmetry of the glyphosate target 5-enolpyruvylshikimate-3-phosphate synthase: A distinctive protein fold. Proc. Natl. Acad. Sci. USA 88: 5046- 5050
17 Du, W., N. G. Wallis, and D. J. Payne. 2000. The kinetic mechanism of 5-enolpyruvylshikimate-3-phosphate synthase from a Gram-positive pathogen Streptococcus pneumoniae. J. Enzyme Inhib. 15: 571-581   DOI
18 Ream, J. E., H. K. Yuen, R. B. Frazier, and J. A. Sikorski. 1992. EPSP synthase binding studies using isothermal titration microcalorimetry and equilibrium dialysis and their implications for ligand recognition and kinetic mechanism. Biochemistry 31: 5528-5534   DOI   ScienceOn
19 Schonbrunn, E., S. Eschenburg, W. A. Shuttleworth, J. V. Schloss, N. Amrhein, J. N. Evans, and W. Kabsch. 2001. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA 98: 1376-1380
20 Kim, J.-H., H.-S. Song, D.-H. Kim, and H.-Y. Kim. 2006. Quantification of genetically modified Canola GT73 using TaqMan real-time PCR. J. Microbiol. Biotechnol. 16: 1778-1783   과학기술학회마을
21 Gruys, K. J., M. C. Walker, and J. A. Sikorski. 1992. Substrate synergism and the steady-state kinetic reaction mechanism for EPSP synthase from Escherichia coli. Biochemistry 31: 5534-5544   DOI   ScienceOn
22 Garner, E., P. Romero, A. K. Dunker, C. Brown, and Z. Obradovic. 1999. Predicting binding regions within disordered proteins. Genome Inform. Ser. Workshop Genome Inform. 10: 41-50
23 Kishore, G. M. and D. M. Shah. 1998. Amino acid biosynthesis inhibitors as herbicides. Annu. Rev. Biochem. 57: 627-663   DOI   ScienceOn
24 Du, W., N. G. Wallis, M. J. Mazzulla, A. F. Chalker, L. Zhang, W. S. Liu, H. Kallender, and D. J. Payne. 2000. Characterization of Streptococcus pneumoniae 5-enolpyruvylshikimate 3- phosphate synthase and its activation by univalent cations. Eur. J. Biochem. 267: 222-227   DOI   ScienceOn