• Title/Summary/Keyword: C-V characteristic

Search Result 428, Processing Time 0.027 seconds

Actinomycins에 의한 Adenosine Deaminase의 억제

  • 김경자;조성진
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.380-383
    • /
    • 1996
  • Adenosine deaminase inhibitor was extracted from culture broth of Streptomyces sp. strain V-8 with ethylacetate. The ethylacetate extract showed the characteristic UV absorption spectrum of actinomycins at 440-450 nm. The ethylacetate extract was compared with respect to inhibitory behavior against adenosine deaminase from calf intestinal mucosa with actinomycin D, -C complex and actinomycin V. The Ki values for actnomycin D, -C complex, and actinomycin V against adenosine deaminase were determined to be 9.9 $\times$ 10$^{-6}$ M, 9.6 $\times$ 10$^{-6}$ M and 9.3 $\times$ 10$^{-6}$ M, respectively. The Ki value for the ethylacetate extract of culture broth against adenosine deaminase was determined to be 5.7 $\times$ 10$^{-6}$ M. The kinetic parameters of actinomycin D, -C complex, -V and ethylacetate extract of culture broth for adenosine deaminase were as follows:I$_{50}$ = 1.5 $\times$ 10$^{-5}$ M (actinomycin D), 2.7 $\times$ 10$^{-5}$ M (actinomycin C complex), 3.5 $\times$ 10$^{-5}$ M (actinomycin V), 8.9 $\times$ 10$^{-6}$ M (ethylacetate extract of culture broth). The adenosine deaminase was inhibited noncompetitively by ethylacetate extract of culture broth as well as by actinomycin D, -C complex and actinomycin V.

  • PDF

Effect of hydrogen addition to use DC sputtering method on the electrical properties of Al/AlN/Si MIS capacitor fabrication (DC sputtering법을 이용한 Al/AlN/Si MIS capacitor 제작 및 수소첨가가 전기적 특성에 미치는 영향)

  • Kim, Min-Suk;Kwon, Jung-Yul;Kim, Jee-Gyun;Lee, Heon-Yong;Lee, Hwan-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1919-1921
    • /
    • 1999
  • AlN thin films were fabricated by sputter for the application of MIS device with Al/AlN/Si structure. We controled that sub-temperature room-temperature. Sputtering pressure 5 mTorr, flow ratio Ar:$N_2$=1:1(4sccm:4sccm), and appended hydrogen gas $0{\sim}5%$. AlN thin films thickness fabricated to maintain $2700{\AA}$ time control. Before the experiment remove to the contaminated material use the Ultrasonic every 10 minute use the acetone and ethanol, then use the HF remove oxide-substance at 10 second. To analyze characteristic of the $H_2$ gas addition period, C-V and I-V characteristic make and experiment $H_2$ gas at addition period progressive capability of I-V and C-V characteristic.

  • PDF

The Characteristics of c-BN Thin Films on High Speed Steel by Electron Assisted Hot Filament C.V.D Systems (EACVD법에 의한 고속도강에의 c-BN박막형성 및 특성에 관하여)

  • Lee, Gun-Young;Choe, Jean-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.3
    • /
    • pp.87-92
    • /
    • 2006
  • The characteristic of interface layer and the effect of bias voltage on the microstructure of c-BN films were studied in the microwave plasma hot filament C.V.D process. c-BN films were deposited on a high speed steel(SKH-51) substrate by hot filament CVD technique assisted with a microwave plasma to develop a high performance of resistance coating tool. c-BN films were obtained at a gas pressure of 20 Torr, vias voltage of 300 V and substrate temperature of $800^{\circ}C$ in $B_2H_6-NH_3-H_2$ gas system. It was found that a thin layer of hexagonal boron nitride(h-BN) phase exists at the interface between c-BN layer and substrate.

A Study on the Electrical Characteristic Analysis of c-Si Solar Cell Diodes

  • Choi, Pyung-Ho;Kim, Hyo-Jung;Baek, Do-Hyun;Choi, Byoung-Deog
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • A study on the electrical characteristic analysis of solar cell diodes under experimental conditions of varying temperature and frequency has been conducted. From the current-voltage (I-V) measurements, at the room temperature, we obtained the ideality factor (n) for Space Charge Region (SCR) and Quasi-Neutral Region (QNR) of 3.02 and 1.76, respectively. Characteristics showed that the value of n (at SCR) decreases with rising temperature and n (at QNR) increases with the same conditions. These are due to not only the sharply increased SCR current flow but the activated carrier recombination in the bulk region caused by defects such as contamination, dangling bonds. In addition, from the I-V measurements implemented to confirm the junction uniformity of cells, the average current dispersion was 40.87% and 10.59% at the region of SCR and QNR, respectively. These phenomena were caused by the pyramidal textured junction structure formed to improve the light absorption on the device's front surface, and these affect to the total diode current flow. These defect and textured junction structure will be causes that solar cell diodes have non-ideal electrical characteristics compared with general p-n junction diodes. Also, through the capacitance-voltage (C-V) measurements under the frequency of 180 kHz, we confirmed that the value of built-in potential is 0.63 V.

Formation Temperature Dependence of Thermal Stability of Nickel Silicide with Ni-V Alloy for Nano-scale MOSFETs

  • Tuya, A.;Oh, S.Y.;Yun, J.G.;Kim, Y.J.;Lee, W.J.;Ji, H.H.;Zhang, Y.Y.;Zhong, Z.;Lee, H.D.
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.611-614
    • /
    • 2005
  • In this paper, investigated is the relationship between the formation temperature and the thermal stability of Ni silicide formed with Ni-V (Nickel Vanadium) alloy target. The sheet resistance after the formation of Ni silicide with the Ni-V showed stable characteristic up to RTP temperature of $700\;^{\circ}C$ while degradation of sheet resistance started at that temperature in case of pure-Ni. Moreover, the Ni silicide with Ni-V indicated more thermally stable characteristic after the post-silicidation annealing. It is further found that the thermal robustness of Ni silicide with Ni-V was highly dependent on the formation temperature. With the increased silicidation temperature (around $700\;^{\circ}C$), the more thermally stable Ni silicide was formed than that of low temperature case using the Ni-V.

  • PDF

A Study on Properties Leakage Current due to Voltage of Ethylene Propylene Rubber (에틸렌프로필렌 고무의 전압에 의한 누설전류 특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.872-877
    • /
    • 2013
  • In this study, the leakage current - voltage characteristic and leakage current - time characteristic for the undegradated Ethylene Propylene Rubber and the Ethylene Propylene Rubber which is degradated by water tree for 200 hours have been measured on the temperature range of $50{\sim}80^{\circ}C$ and applied DC voltage range of 200 V~800 V for 90 minutes. The results of this study are listed below. In case the temperature is $50^{\circ}C$, it founds that the leakage current have shown a increase in proportion to the applied voltage as 2 pA in 200 V, 6 pA in 400 V, 10 pA in 600 V and 15 pA in 800 V. It founds that the leakage current increased with the rise of temperature. It founds that the leakage current was consistent as time goes by, the leakage current of the sample degradated by water tree for 200 hours has increased more than undegradated sample.

A Study on the Dielectric Constant Measurement of PBDG Organic Ultra Thin Film (PBDG 유기초박막의 유전율 측정에 관한 연구)

  • Song, Jin-Won;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.150-152
    • /
    • 2002
  • This paper, experiment manufactures device of Metal/Poly-$\gamma-Benzyl\;_D-Glutamate$ Organic Films/Metal structure using PBDG and I-V properties and C-F properties. The I-V characteristic is measured that approve voltage from 0 to +2[V] of device and the distance between electrode is larger, could know that small current flow and thin film could know that had insulation property. C-F characteristic has each other affinity between the polarization amount and frequency. Dielectric constant of MIM device could know by dipole that is voluntary polarization of LB film that polarization is happened. The capacitor properties of a thin film is better as the distance between electrodes is smaller.

  • PDF

One-dimensional Schottky nanodiode based on telescoping polyprismanes

  • Sergeyev, Daulet
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.339-347
    • /
    • 2021
  • In the framework of the density functional theory combined with the method of non-equilibrium Green functions (DFT + NEGF), the electric transport properties of a one-dimensional nanodevice consisting of telescoping polyprismanes with various types of electrical conductivity were studied. Its transmission spectra, density of state, current-voltage characteristic, and differential conductivity are determined. It was shown that C[14,17], C[14,11], C[14,16], C[14,10] show a metallic nature, and polyprismanes C[14,5], C[14,4] possess semiconductor properties and has a band gap of 0.4 eV and 0.6 eV, respectively. It was found that, when metal C[14,11], C[14,10] and semiconductor C[14,5], C[14,4] polyprismanes are coaxially connected, a Schottky barrier is formed and a weak diode effect is observed, i.e., manifested valve (rectifying) property of telescoping polyprismanes. The enhancement of this effect occurs in the nanodevices C[14,17] - C[14,11] - C[14,5] and C[14,16] - C[14,10] - C[14,4], which have the properties of nanodiode and back nanodiode, respectively. The simulation results can be useful in creating promising active one-dimensional elements of nanoelectronics.

One-dimensional Schottky nanodiode based on telescoping polyprismanes

  • Sergeyev, Daulet
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.471-479
    • /
    • 2021
  • In the framework of the density functional theory combined with the method of non-equilibrium Green functions (DFT + NEGF), the electric transport properties of a one-dimensional nanodevice consisting of telescoping polyprismanes with various types of electrical conductivity were studied. Its transmission spectra, density of state, current-voltage characteristic, and differential conductivity are determined. It was shown that C[14,17], C[14,11], C[14,16], C[14,10] show a metallic nature, and polyprismanes C[14,5], C[14,4] possess semiconductor properties and has a band gap of 0.4 eV and 0.6 eV, respectively. It was found that, when metal C[14,11], C[14,10] and semiconductor C[14,5], C[14,4] polyprismanes are coaxially connected, a Schottky barrier is formed and a weak diode effect is observed, i.e., manifested valve (rectifying) property of telescoping polyprismanes. The enhancement of this effect occurs in the nanodevices C[14,17] - C[14,11] - C[14,5] and C[14,16] - C[14,10] - C[14,4], which have the properties of nanodiode and back nanodiode, respectively. The simulation results can be useful in creating promising active one-dimensional elements of nanoelectronics.

A Study on the AC Interfacial Breakdown Properties of the Interface between Epoxy/EPDM with Variation of the Spread Oil (도포된 오일의 변화에 따른 Epoxy/EPDM 계면의 교류 절연파괴 특성에 관한 연구)

  • Bae, Deok-Gwon;Jeong, Il-Hyeong;O, Jae-Han;Park, U-Hyeon;Lee, Gi-Sik;Kim, Chung-Hyeok;Lee, Jun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.445-450
    • /
    • 2000
  • Many successful developments and microscopic studies have been made on the high quality insulating materials. However, a little attention have given to the macroscopic interface in HV(High Voltage) insulating systems. In this study, AC interfacial breakdown strength and V-t characteristic of the interface between Epoxy/EPDM(ethylene propylene diene terpolymer) are investigated. Electrode system is designed to reduce the charges from electrodes and to have the tangential potentials along the interface between Epoxy/EPDM by FEM(finite elements method). The AC breakdown strength is observed when HV is given to the interface. It is shown that AC interfacial breakdown strength is improved by increasing interfacial pressure and oiling. In particular, it was saturated at certain interfacial pressure level. V-t characteristic is able to extend to the life time of the interface between Epoxy/EPDM. Oiling also plays a good roll in prolongation of the life time.

  • PDF