• Title/Summary/Keyword: C doping

Search Result 901, Processing Time 0.037 seconds

Validation and Applications of Gas Chromatography-Combustion/isotope Ratio Mass Spectrometric Method to Control Misuse of Androgens in Human

  • Lee, Kang-Mi;Kim, Ho-Jun;Jeong, Eun-Sook;Yoo, Hye-Hyun;Kwon, Oh-Seung;Jin, Chang-Bae;Kim, Dong-Hyun;Lee, Jae-Ick
    • Mass Spectrometry Letters
    • /
    • v.2 no.2
    • /
    • pp.33-36
    • /
    • 2011
  • The misuse of anabolic androgenic steroids is of particular concern in sports and society. Thus, it is of great importance to discriminate endogenous steroids such as testosterone or testosterone prohormones from their chemically identical synthetic copies. In this study, gas chromatography-combustion/isotope ratio mass spectrometric (GC-C/IRMS) method has been developed and validated for discriminating the origin of anabolic androgenic steroids. The method involves the solid-phase extraction, enzymatic hydrolysis with ${\beta}$-glucuronidase, HPLC-fractionation for the cleanup and analysis by GC-C/IRMS. The difference(${\Delta}^{13}C$) of urinary ${\delta}^{13}C$ values between synthetic analogues and endogenous reference compounds (ERC) by GC-C/IRMS was used to elucidate the origin of steroids, and intra- and inter-day precision, specificity and isotope fractionation were evaluated. The present GC-C/IRMS method combined with HPLC cleanup was accurate and reproducible enough to be successfully applied to the test of urine sample from suspected anabolic steroid abusers.

Fabrication of excimer laser annealed poly-si thin film transistor by using an elevated temperature ion shower doping

  • Park, Seung-Chul;Jeon, Duk-Young
    • Electrical & Electronic Materials
    • /
    • v.11 no.11
    • /
    • pp.22-27
    • /
    • 1998
  • We have investigated the effect of an ion shower doping of the laser annealed poly-Si films at an elevated substrate temperatures. The substrate temperature was varied from room temperature to 300$^{\circ}C$ when the poly-Si film was doped with phosphorus by a non-mass-separated ion shower. Optical, structural, and electrical characterizations have been performed in order to study the effect of the ion showering doping. The sheet resistance of the doped poly-Si films was decreased from7${\times}$106 $\Omega$/$\square$ to 700 $\Omega$/$\square$ when the substrate temperature was increased from room temperature to 300$^{\circ}C$. This low sheet resistance is due to the fact that the doped film doesn't become amorphous but remains in the polycrystalline phase. The mildly elevated substrate temperature appears to reduce ion damages incurred in poly-Si films during ion-shower doping. Using the ion-shower doping at 250$^{\circ}C$, the field effect mobility of 120 $\textrm{cm}^2$/(v$.$s) has been obtained for the n-channel poly-Si TFTs.

  • PDF

Improving electroluminescent efficiency of organic light emitting diodes by co-doping (Co-doping을 이용한 OLED의 발광 효율 향상)

  • Park, Young-Wook;Kim, Young-Min;Choi, Jin-Hwan;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.81-82
    • /
    • 2006
  • Doping is a well-known method for improving electroluminescent (EL) efficiency of organic light emitting diodes. In our study, doping with 2 materials simultaneously, we could achieve improved EL efficiency. The emission layer was tris-(8-hydroxyquinoline)aluminum, and the 2 dopants were N,N'-dimethyl-quinacridone (DMQA) and 10-(2-Benzothiazolyl)-2, 3, 6, 7-tetrahydro-1,1,7,7,-tetramethyl 1-1H, 5H, 11H-[1] benzopyrano [6,7,8-ij]quinolizin-11-one (C-545T). The EL intensity of co-doped device was nearly flat, it shows that co-doping technique could be a effective way to improve the EL efficiency. EL efficiency of Single-doped device based on DMQA and C-S45T were ~6.47Cd/A and ~7.45Cd/A, respectively. Co-doped device showed higher EL efficiency of ~8.30Cd/A.

  • PDF

The Polytype Transformation Research During SiC Crystal Growth by the Effect of Doping Level in Seed (탄화규소 단결정 성장 시 종자정 도핑농도 영향에 따른 결정 다형변화 연구)

  • Park, Jong-Hwi;Yang, Tae-Kyoung;Lee, Sang-Il;Jung, Jung-Young;Park, Mi-Seon;Lee, Won-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.799-802
    • /
    • 2011
  • In this study, SiC single-crystal ingots were prepared on two seed crystals with different doping level by using the physical vapor transport (PVT) technique; then, SiC crystal wafers sliced from the grown SiC ingot were systematically investigated to find the effect of seed doping level on the doping concentration and crystal quality of the SiC. To exclude extra effects induced by adjustment of the process parameters, we simultaneously grew the SiC crystals on two seed crystals with different level, which were fabricated from previous two SiC crystal ingots.

Effects of Polyacrylic Acid Doping on Microstructure and Critical Current Density of $MgB_2$ Bulk ($MgB_2$ bulk의 미세구조와 임계전류밀도에 미치는 polyacrylic acid doping 효과)

  • Lee, S.M.;Hwang, S.M.;Lee, C.M.;Joo, J.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.11 no.2
    • /
    • pp.87-91
    • /
    • 2010
  • We fabricated the polyacrylic acid (PAA)-doped $MgB_2$ bulks and characterized their lattice parameters, actual C substitutions, microstructures, and critical properties. The boron (B) powder was mixed with PAA using N,N-dimethylformamide as solvent and then the solution was dried out at $200^{\circ}C$ and crushed. The C treated B powder and magnesium powder were mixed and compacted by uniaxial pressing at 500 MPa, followed by sintering at $900^{\circ}C$ for 1 h in high purity Ar atmosphere. We observed that the PAA doping increased the MgO amount but decreased the grain size, a-axis lattice constant, and critical temperature ($T_c$), which is indicative of the C substitution for B sites in $MgB_2$. In addition, the critical current density ($J_c$) at high magnetic field was significantly improved with increasing PAA addition: at 5 K and 6.6 T, the $J_c$ of 7 wt% PAA-doped sample was $6.39\;{\times}\;10^3\;A/cm^2$ which was approximately 6-fold higher than that of the pure sample ($1.04\;{\times}\;10^3\;A/cm^2$). This improvement was probably due to the C substitution and the refinement of grain size by PAA doping, suggesting that PAA is an effective dopant in improving $J_c$(B) performance of $MgB_2$.

A Study on the Analysis of Methylprednisolone Acetate and its Metabolites in Rat Urine by LC/MS (LC/MS를 이용한 뇨중에서의 Methylprednisolone Acetate 및 그 대사물질 분석에 관한 연구)

  • Park, Song-Ja;Pyo, Hee Soo;Kim, Yun Je;Park, Seong Soo;Park, Jongsei
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.139-159
    • /
    • 1995
  • Positive ion mass spectra of some corticosteroids were obtained by using liquid chromatography-mass spectrometry(LC-MS). The base peak of each compound showed the protonated molecular ion [$MH^+$], ammonium adduct ion [${MNH_4}^+$] or [$MH^+-60$] ion according to its chemical structure and other characteristic mass ions were [$MH^+-18$], [${MNH_4}^+-18$] and so on. Several rat urinary metabolites of methylprednisolone acetate after the oral administration were detected by the thermospray LC-MS. The identified major metabolites were 20-hydroxymethylprednisolone(20-HMP), methylprednisolone(MP) and methylprednisone(11-KMP), which were supposed to be formed by deacetylation at the position of C-21, reduction at C-20, oxidation at C-11, or due to the bond cleavage between C-17 and C-20.

  • PDF

Optimization of 4H-SiC Superjunction Accumulation MOSFETs by Adjustment of the Thickness and Doping Level of the p-Pillar Region (p-Pillar 영역의 두께와 농도에 따른 4H-SiC 기반 Superjunction Accumulation MOSFET 소자 구조의 최적화)

  • Jeong, Young-Seok;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.345-348
    • /
    • 2017
  • In this work, static characteristics of 4H-SiC SJ-ACCUFETs were obtained by adjusting the p-pillar region. The structure of this SJ-ACCUFET was designed by using a two-dimensional simulator. The static characteristics of SJ-ACCUFET, such as the breakdown voltages, on-resistance, and figure of merits, were obtained by varying the p-pillar doping concentration from $1{\times}10^{15}cm^{-3}$ to $5{\times}10^{16}cm^{-3}$ and the thickness from $0{\mu}m$ to $9{\mu}m$. The doping concentration and the thickness of p-pillar region are closely related to the break down voltage and on-resistance and threshold voltages. Hence a silicon carbide SJ-ACCUFET structure with highly intensified breakdown voltages and low on-resistances with good figure of merits can be achieved by optimizing the p-pillar thickness and doping concentration.

ATR-Infrared Spectroscopic Study of n-Doped Polyacetylene Films

  • Kim, Jin-Yeol;Kim, Jae-Taek;Kwon, Min-Hee;Han, Dong-Kyu;Kwon, Si-Joong
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.5-9
    • /
    • 2007
  • The attenuated total reflection infrared (ATR-IR) spectra of trans-polyacetylene (trans-PA) film doped with sodium (n-doping) were observed in the range of 1900 to $700cm^{-1}$. The observed IR bands were attributed to negatively charged domains created by n-doping electrons. The doping-induced IR bands showed considerable difference from its pristine film. After doping, the out-of-plane CH deformation band of the strong $1010cm^{-1}$ region in the pristine film disappeared while several new bands were observed at 1600 (due to C=C stretching), 1400 (due to in-plane CH bending), 1290 and 1174 (due to CH stretching), and $880cm^{-1}$ (due to CC stretching) regions for Na-doped PA. In particular, a weak band of C=C stretching at $1600cm^{-1}$ was newly obtained for the first time in the present study. The electro conductivity of the doped trans-PA film was $10^2S/cm$ and the origins of doping-induced IR bands are discussed in terms of solitons and polarons.

Significance of N-moieties in regulating the electrochemical properties of nano-porous graphene: Toward highly capacitive energy storage devices

  • Khan, Firoz;Kim, Jae Hyun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.129-139
    • /
    • 2018
  • The effects of N doping concentration and dopant moieties on the electrochemical properties of nanoporous graphene and their dependence on annealing temperature are investigated. Four types of N moieties - amide, amine, graphitic-N, and oxidized-N - are obtained, which transformed into pyridinic-N and pyrrolic-N upon annealing. The diffusion coefficient (D') of the ions in the electrode is the maximum at $400^{\circ}C$ because of a high level of N doping, whereas the second highest D0 value is obtained at $700^{\circ}C$ owing to a high level of reduction and N doping. The highest specific capacitance is obtained for the sample annealed at $400^{\circ}C$.

Optimization of 4H-SiC Vertical MOSFET by Current Spreading Layer and Doping Level of Epilayer (Current Spreading Layer와 에피 영역 도핑 농도에 따른 4H-SiC Vertical MOSFET 항복 전압 최적화)

  • Ahn, Jung-Joon;Moon, Kyoung-Sook;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.767-770
    • /
    • 2010
  • In this work, we investigated the static characteristics of 4H-SiC vertical metal-oxidesemiconductor field effect transistors (VMOSFETs) by adjusting the doping level of n-epilayer and the effect of a current spreading layer (CSL), which was inserted below the p-base region with highly doped n+ state ($5{\times}10^{17}cm^{-3}$). The structure of SiC VMOSFET was designed by using a 2-dimensional device simulator (ATLAS, Silvaco Inc.). By varying the n-epilayer doping concentration from $1{\times}10^{16}cm^{-3}$ to $1{\times}10^{17}cm^{-3}$, we investigated the static characteristics of SiC VMOSFETs such as blocking voltages and on-resistances. We found that CSL helps distribute the electron flow more uniformly, minimizing current crowding at the top of the drift region and reducing the drift layer resistance. For that reason, silicon carbide VMOSFET structures of highly intensified blocking voltages with good figures of merit can be achieved by adjusting CSL and doping level of n-epilayer.