• 제목/요약/키워드: C*-algebra

검색결과 89건 처리시간 0.018초

${\mathfrak{A}}$-GENERATORS FOR THE POLYNOMIAL ALGEBRA OF FIVE VARIABLES IN DEGREE 5(2t - 1) + 6 · 2t

  • Phuc, Dang Vo
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.371-399
    • /
    • 2020
  • Let Ps := 𝔽2[x1, x2, …, xs] = ⊕n⩾0(Ps)n be the polynomial algebra viewed as a graded left module over the mod 2 Steenrod algebra, ${\mathfrak{A}}$. The grading is by the degree of the homogeneous terms (Ps)n of degree n in the variables x1, x2, …, xs of grading 1. We are interested in the hit problem, set up by F. P. Peterson, of finding a minimal system of generators for ${\mathfrak{A}}$-module Ps. Equivalently, we want to find a basis for the 𝔽2-graded vector space ${\mathbb{F}}_2{\otimes}_{\mathfrak{A}}$ Ps. In this paper, we study the hit problem in the case s = 5 and the degree n = 5(2t - 1) + 6 · 2t with t an arbitrary positive integer.

On the Tarry-Escott and Related Problems for 2 × 2 matrices over ℚ

  • Supawadee Prugsapitak;Walisa Intarapak;Vichian Laohakosol
    • Kyungpook Mathematical Journal
    • /
    • 제63권3호
    • /
    • pp.345-353
    • /
    • 2023
  • Reduced solutions of size 2 and degree n of the Tarry-Escott problem over M2(ℚ) are determined. As an application, the diophantine equation αAn + βBn = αCn + βDn, where α, β are rational numbers satisfying α + β ≠ 0 and n ∈ {1, 2}, is completely solved for A, B, C, D ∈ M2(ℚ).

C32-CONSTRUCTION ON Mn(κ)

  • Song, Youngkwon
    • Korean Journal of Mathematics
    • /
    • 제12권1호
    • /
    • pp.23-32
    • /
    • 2004
  • Let (B, $m_B$, ${\kappa}$) be a maximal commutative ${\kappa}$-subalgebra of a matrix algebra $M_n(\kappa)$. We will construct a maximal commutative ${\kappa}$-subalgebra (R, $m$, ${\kappa}$) of $M_n+3(\kappa)$ from the algebra B such that the algebra R has dimension greater than the dimension of B by 3. Moreover, we will show a $C_i$-construction doesn't imply a $C^3_2$-construction for $i=1,2$.

  • PDF

HYERS-ULAM-RASSIAS STABILITY OF ISOMORPHISMS IN C*-ALGEBRAS

  • Park, Choonkil
    • 충청수학회지
    • /
    • 제19권2호
    • /
    • pp.159-175
    • /
    • 2006
  • This paper is a survey on the Hyers-Ulam-Rassias stability of the Jensen functional equation in $C^*$-algebras. The concept of Hyers-Ulam-Rassias stability originated from the Th.M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. Its content is divided into the following sections: 1. Introduction and preliminaries. 2. Approximate isomorphisms in $C^*$-algebras. 3. Approximate isomorphisms in Lie $C^*$-algebras. 4. Approximate isomorphisms in $JC^*$-algebras. 5. Stability of derivations on a $C^*$-algebra. 6. Stability of derivations on a Lie $C^*$-algebra. 7. Stability of derivations on a $JC^*$-algebra.

  • PDF

CHARACTERIZATIONS OF (JORDAN) DERIVATIONS ON BANACH ALGEBRAS WITH LOCAL ACTIONS

  • Jiankui Li;Shan Li;Kaijia Luo
    • 대한수학회논문집
    • /
    • 제38권2호
    • /
    • pp.469-485
    • /
    • 2023
  • Let 𝓐 be a unital Banach *-algebra and 𝓜 be a unital *-𝓐-bimodule. If W is a left separating point of 𝓜, we show that every *-derivable mapping at W is a Jordan derivation, and every *-left derivable mapping at W is a Jordan left derivation under the condition W𝓐 = 𝓐W. Moreover we give a complete description of linear mappings 𝛿 and 𝜏 from 𝓐 into 𝓜 satisfying 𝛿(A)B* + A𝜏(B)* = 0 for any A, B ∈ 𝓐 with AB* = 0 or 𝛿(A)◦B* + A◦𝜏(B)* = 0 for any A, B ∈ 𝓐 with A◦B* = 0, where A◦B = AB + BA is the Jordan product.

INDEX AND STABLE RANK OF C*-ALGEBRAS

  • Kim, Sang Og
    • Korean Journal of Mathematics
    • /
    • 제7권1호
    • /
    • pp.71-77
    • /
    • 1999
  • We show that if the stable rank of $B^{\alpha}$ is one, then the stable rank of B is less than or equal to the order of G for any action of a finite group G. Also we give a short proof to the known fact that if the action of a finite group on a $C^*$-algebra B is saturated then the canonical conditional expectation from B to $B^{\alpha}$ is of index-finite type and the crossed product $C^*$-algebra is isomorphic to the algebra of compact operators on the Hilbert $B^{\alpha}$-module B.

  • PDF

WIENER-HOPF C*-ALGEBRAS OF STRONGL PERFORATED SEMIGROUPS

  • Jang, Sun-Young
    • 대한수학회보
    • /
    • 제47권6호
    • /
    • pp.1275-1283
    • /
    • 2010
  • If the Wiener-Hopf $C^*$-algebra W(G,M) for a discrete group G with a semigroup M has the uniqueness property, then the structure of it is to some extent independent of the choice of isometries on a Hilbert space. In this paper we show that if the Wiener-Hopf $C^*$-algebra W(G,M) of a partially ordered group G with the positive cone M has the uniqueness property, then (G,M) is weakly unperforated. We also prove that the Wiener-Hopf $C^*$-algebra W($\mathbb{Z}$, M) of subsemigroup generating the integer group $\mathbb{Z}$ is isomorphic to the Toeplitz algebra, but W($\mathbb{Z}$, M) does not have the uniqueness property except the case M = $\mathbb{N}$.

ALMOST WEAKLY FINITE CONDUCTOR RINGS AND WEAKLY FINITE CONDUCTOR RINGS

  • Choulli, Hanan;Alaoui, Haitham El;Mouanis, Hakima
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.327-335
    • /
    • 2022
  • Let R be a commutative ring with identity. We call the ring R to be an almost weakly finite conductor if for any two elements a and b in R, there exists a positive integer n such that anR ∩ bnR is finitely generated. In this article, we give some conditions for the trivial ring extensions and the amalgamated algebras to be almost weakly finite conductor rings. We investigate the transfer of these properties to trivial ring extensions and amalgamation of rings. Our results generate examples which enrich the current literature with new families of examples of nonfinite conductor weakly finite conductor rings.