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WIENER-HOPF C∗-ALGEBRAS OF STRONGLY

PERFORATED SEMIGROUPS

Sun Young Jang

Abstract. If the Wiener-Hopf C∗-algebra W(G,M) for a discrete group

G with a semigroup M has the uniqueness property, then the struc-
ture of it is to some extent independent of the choice of isometries on
a Hilbert space. In this paper we show that if the Wiener-Hopf C∗-
algebra W(G,M) of a partially ordered group G with the positive cone

M has the uniqueness property, then (G,M) is weakly unperforated. We
also prove that the Wiener-Hopf C∗-algebra W(Z,M) of subsemigroup M
generating the integer group Z is isomorphic to the Toeplitz algebra, but
W(Z,M) does not have the uniqueness property except the case M = N.

1. Introduction and preliminaries

Let M be a countable discrete semigroup and W : M → B be an isomet-
ric homomorphism for a unital C∗-algebra B. We will consider a C∗-algebra
generated by {Wx | x ∈ M} and denote it by C∗(WM ). Specially, the C∗-
algebra generated by the left regular isometric representation has been much
studied and called in the several names such as the Wiener-Hopf C∗-algebra [7,
12]. Besides the Wiener-Hopf C∗-algebra, we consider a semigroup C∗-algebra
introduced by G. J. Murphy [10], which is obtained by enveloping all isomet-
ric representations of M and denoted by C∗(M). From the definition of the
semigroup C∗-algebra it has the following universal property: for any isometric
homomorphism W of M and a C∗-algebra C∗(WM ) , there exists a unique ho-
momorphism ϕ from the semigroup C∗-algebra C∗(M) onto C∗(WM ) sending
a canonical isometry Vx to an isometry Wx for each x ∈ M , where V is the
canonical isometric homomorphism of M to the semigroup C∗-algebra C∗(M).

L. A. Coburn proved his well-known theorem [1], which asserts that C∗-
algebras generated by a single non-unitary isometry on a Hilbert space do
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not depend on the particular choice of the isometry. That is, the C∗-algebra
generated by a single non-unitary isometry on a Hilbert space is isomorphic to
the Toeplitz algebra and the Toeplitz algebra is the universal algebra of C∗-
algebras generated by a non-unitary isometry. So if M is the natural number
semigroup N, then the semigroup C∗-algebra C∗(N) and the Wiener-Hopf C∗-
algebra W(N) are generated by a non-unitary isometry and are isomorphic to
the Toeplitz algebra.

Many authors have contributed to development of generalization of Coburn’s
result [1, 2, 4, 10], which is to find the condition when the Wiener-Hopf C∗-
algebra W(M) and the semigroup C∗-algebra C∗(M) are isomorphic or when
the Wiener-Hopf C∗-algebra W(M) has a universal property for certain kinds
of isometric representations of the semigroup M [2, 3, 4, 8, 10].

A. Nica called Coburn’s result the uniqueness property of the C∗-algebras
generated by isometric representations. Besides the Toeplitz algebra, the C∗-
algebra generated by one-parameter semigroup of isometries and the Cuntz
algebra are also remarkable examples of the C∗-algebras of isometries with the
uniqueness property.

A. Nica introduced the quasi-lattice ordered group (G,M), the covariant
isometric representations of semigroups and the amenability of quasi-lattice
ordered groups in order to find the condition that the Wiener-Hopf C∗-algebra
W(G,M) has a universal property for certain kinds of isometric representations
of M [10]. The partially ordered group (G,M) is a quasi-lattice ordered group
if every finite subset of G with an upper bound in M has a least upper bound
in M . If a quasi-lattice ordered group (G,M) is amenable in the sense of
Nica, the Wiener-Hopf C∗-algebra W(G,M) is the universal C∗-algebra of
the C∗-algebras generated by covariant isometric representations. It seems
that the quasi-lattice ordered group is an appropriate concept for the universal
property of the Wiener-Hopf C∗-algebras. In [7] we had a very quite simple,
non quasi-lattice ordered group (Z, P ) with P = {0, 2, 3, . . .}. Furthermore the
semigroup P is a strongly perforated semigroup. We showed in [7] thatW(Z, P )
is isomorphic to the classic Toeplitz algebra, but W(Z, P ) is not isomorphic to
the semigroup C∗-algebra C∗(P ).

In Section 2, we show that if the Wiener Hopf C∗-algebra W(G,M) has the
uniqueness property, (G,M) is weakly unperforated. In Section 3, we show
that the Wiener-Hopf C∗-algebra W(Z,M) of subsemigroup M generating the
integer group Z is isomorphic to the Toeplitz algebra, but W(Z,M) does not
have the uniqueness property except the case M = N. And we give examples
which show that the quasi-lattice ordered group is a very appropriate concept
for the universal property of the Wiener-Hopf C∗-algebras.

Let M be a countable, discrete semigroup with unit e, and B be a unital
C∗-algebra. We say that a map W : M → B, x → Wx is an isometric homo-
morphism from M to B if all of the elements Wx are isometries, if We = 1, and
if Wxy = WxWy (x, y ∈ M). If H is a Hilbert space and W : M → B(H) is an
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isometric homomorphism, we call the pair (H,W ) an isometric representation
of M on H.

When M is a left-cancellative semigroup and H is an arbitrary non-zero

Hilbert space, set H̃ = l2(M,H), the Hilbert space of all square-summable
functions from M to H with the obvious operations and inner product. For

x ∈ M , we define an isometry Lx on H̃ by setting

Lxf(z) =

{
f(y), if z ∈ xM,

0, if z /∈ xM.

We say that (H̃,L) is the left regular isometric representation of M on H̃.
If x is invertible in M , then Lxf(z) = f(x−1z) for each z ∈ M , so Lx is a

left regular unitary on H̃.

If the Hilbert space H is C, the complex field, then H̃ is just l2(M) and the
left regular isometric representation L on l2(M) acts on as follows:

Lx(δy) = δxy (x, y ∈ M),

where {δx | x ∈ M} is the canonical orthonormal basis of l2(M) defined by

δx(y) =

{
1, if x = y,

0, otherwise.

If M is the semigroup N of natural numbers, the left regular isometry L1

is the unilateral shift on l2(N) and Ln is the n-copy of the unilateral shift L1

with respect to the canonical orthonormal basis {δn | n ∈ N} for each n ∈ N.
The C∗-algebra generated by the left regular isometries {Lx | x ∈ M} on

l2(M) is called the Wiener-Hopf C∗-algebra and denoted by W(M). And we
can see thatW(M) is the closed linear span of {Lxi1

L∗
xi2

· · · L∗
xi2ni

Lxi2ni+1
| xij

∈ M}.
If M is the semigroup N of natural numbers, W(N) is generated by {Ln | n ∈

N}. Since Ln = Ln
1 for each n ∈ N, W(N) is generated by a single non-unitary

isometry L1 on l2(N). Therefore W(N) is the classical Toeplitz algebra. In this
sense the Wiener Hopf C∗-algebra is a generalized Toeplitz algebra.

2. Unperforated semigroups and uniqueness property

Let M be a countable discrete semigroup. We can give an order on M as
follows: if an element x in M is contained in yM for some element y ∈ M , then
x and y are comparable and we denote this by y ≤ x. This relation makes M
a pre-ordered semigroup.

Rørdam made a statement in [14, 15] what we call unperforated property of
a unperforated property of a partially ordered group. If M is abelian, M can
be equipped with the algebraic order y ≤ x if and only if x = y + z for some
z ∈ M . An element x ∈ M is called positive if y ≤ y + x for all y ∈ M , and M
is positive if all element in M are positive. If M has a zero element 0, then M
is positive if and only if 0 ≤ x for all x ∈ M.



1278 SUN YOUNG JANG

A positive ordered abelian semigroup W is said to be almost unperforated if
for all x, y ∈ M and all n,m ∈ M , with nx ≤ my and n > m, one has x ≤ y. A
partially ordered abelian group G with the positive cone M is said to be almost
unperforated if the statement that x ∈ G and n ∈ N with nx, (n + 1)x ∈ M
implies that x ∈ M . It is known that G is almost unperforated if and only if
the positive semigroup M is almost unperforated for a partially ordered abelian
group (G,M) [14, 15].

If the condition that n ∈ N and x ∈ G with nx ∈ M implies that x ∈ M ,
then the partially ordered abelian group (G,M) is weakly unperforated. Any
weakly unperforated group is almost unperforated, but the converse is not true.
The negation of almost unperforated property is strongly perforated.

If we put Px = LxL∗
x for each x ∈ M , the range projection Px of Lx is the

orthogonal projection onto the closed linear span of {δy | y ≥ x, y ∈ m}. For
each x, y ∈ M

PxPy =


0, if x and y are not comparable,

Py, if x ≥ y

Px if y ≥ y.

Hence PxPy = PyPx for each x, y ∈ M , so the left regular isometries have
the mutually commuting range projections.

Theorem 2.1. Let (G,M) be a partially ordered abelian group with the positive
cone M . If for any two isometric representations W and U of M there exists an
isomorphism from the C∗-algebra C∗(WM ) to the C∗-algebra C∗(UM ) sending
Wx to Ux, then (G,M) is weakly unperforated.

Proof. Suppose that (G,M) is not weakly unperforated. Then there exists an
element x0 ∈ G such that nx0 ∈ M for some n ∈ N and x0 /∈ M . Let n0

= the smallest integer of {n ∈ N | nx0 ∈ M}. Put M0 = {z ∈ M | z ≤
n0x0 or z is not comparable with n0x0} and M1 = M −M0 ∪ {0}.

Let W be the isometric representation of M on l2(M1) defined by Wx(δy) =
δx+y for x ∈ M, y ∈ M1 where {δy | y ∈ M} is the canonical basis of l2(M1).
We can see that W is well-defined. Next, since 2n0x0 is contained in M , we
can let n1 the smallest integer of {n | n ̸= n0, nx0 ∈ M}. Then the following
relation holds;

W ∗
n0x0

Wn1x0(I −Wn0x0W
∗
n0x0

)(I −Wn1x0W
∗
n1x0

) = 0.

To define another isometric representation of M , we put M ′ = M ∪ {nx0 | n ∈
N}. An isometric representation U of M on l2(M ′) can be defined by setting
Ux(δ

′
y′) = δ′x+y′ for x ∈ M, y′ ∈ M ′ where {δ′y′ | y′ ∈ M ′} is the canonical

orthonormal basis of l2(M ′). Then the above relation does not hold for the
representation U . If C∗(WM ) is the C∗-algebra generated by the isometric
representation W and C∗(UM ) is the C∗-algebra generated by the isometric
representation U , then we don’t have an isomorphism from the C∗-algebra
C∗(WM ) to the C∗-algebra C∗(UM ) sending Wx to Ux. □
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When an ordered abelian group (G,M) is simple, it is almost unperforated
if and only if it is weakly unperforated. Elliott considered in [5] a notion what
he call (weak) unperforation of ordered abelian groups with torsion. In sense
of Elliott’s a torsion free group G is weakly unperforated if and only if it is
unperforated: g ≥ 0 whenever ng ≥ 0 for some natural numbers n ≥ 2.

Example 2.2. Let M1 = {0, 3, 4, 6, 7, 8, 9, . . .} be the subsemigroup of N gen-
erated by 3 and 4. Then the left regular isometric representation L of l2(M1)
satisfies the relation

L∗
3L4(I − L3L∗

3)(I − L4L∗
4) = 0.

If we define another isometric representation U of M1 as U(n) = Sn for
n = 0, 3, 4, 6, 7, . . . , where S is the unilateral shift on l2(N), this representation
does not satisfy the above relation, i.e.,

S∗3S4(I − S3S∗3)(I − S4S∗4) ̸= 0.

Therefore we see that W(G,M1) is not isomorphic to the semigroup C∗-algebra
C∗(M1) since the semigroup C∗-algebra C∗(M1) is the universal C∗-algebra
generated by isometries of M1.

The semigroup M1 = {0, 3, 4, 6, 7, 8, 9, 10, . . . } looks very simple, but it is
strongly perforated.

3. Generalized Toeplitz algebras

One of the most beautiful property of the Toeplitz algebra is that it is the
universal algebra of C∗-algebras generated by a single non-unitary isometry.
In the following theorem we find semigroups of the integer group Z with more
large extent whose the Wiener-Hopf C∗-algebras are isomorphic to the classical
Toeplitz algebra.

Lemma 3.1. Let M be a countable discrete semigroup. If the Wiener Hopf
C∗-algebra W(M) acts irreducibly on l2(M) if and only if the unit of M is its
only invertible element.

Proof. Suppose that W(M) acts irreducibly on l2(M) and x is invertible in M .
We define an bounded operator Vx on l2(M) by setting

Vx(f(y)) = f(yx) (y ∈ M).

Then Vx commutes with the operators Ly and L∗
y for all y ∈ M , so Vx commutes

with W(M). Since W(M) acts irreducibly on l2(M), Vx should be λI. Hence
x is the unit of M .

Conversely, let T be a bounded linear operator on l2(M) commuting with
W(M). [T[x,y]]x,y∈M is the matrix operator of T with respect to the canonical

basis {δx | x ∈ M} of l2(M). Then we have

T[x,y] = ⟨T (δy), δx⟩ = ⟨T (δy),Lx(δe)⟩ = ⟨TL∗
x(δy), δe⟩.
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Hence the matrix element T[x,y] ̸= 0 only when y ∈ xM . Similarly,

T[x,y] = ⟨TLy(δe), δx⟩ = ⟨T (δe),L∗
y(δx)⟩.

So T[x,y] ̸= 0 only when x ∈ yM and y ∈ xM . Since the unit of M is the only
invertible element, it follows that T[x,y] ̸= 0 only when y = x.

Since isometries Lx’s are isometries, we have

T[x,x] = ⟨TLx(δe),Lx(δe)⟩ = ⟨L∗
xLxT (δe), (δe)⟩ = T[e,e].

So T scalar operators and W(M) acts irreducibly on l2(M). □

Theorem 3.2. If M is the subsemigroup of the integer group Z with M +
(−M) = Z and M ∩ (−M) = 0, then the Wiener Hopf C∗-algebra W(Z,M) is
isomorphic to the Toeplitz algebra.

Proof. Case 1: If M contains 1, then M = N, the set of natural numbers. And
the result is known already.

Case 2: We consider the case of when M does not contain 1. Since M
generates Z, there exist elements m1,m2 ∈ M such that m2 = m1 + 1. We
put m0= the smallest element of {n ∈ M | n + 1 ∈ M} in the usual order
of N. We renumber the elements of M by using the usual order of N, i.e.,
M = {n0 = 0, n1, n2, . . . , nk, nk+1, . . . } and put m0 = nk,m0 + 1 = nk+1. We
define a compact operator Ki for each 0 ≤ i ≤ k − 1, such as

Ki(δn) =

{
δni+1 , n = ni,

0, otherwise.

If there exists an element nl ∈ M such that nl + 1 /∈ M , then we define a
compact operator Fl,

Fl(δn) =

{
δnl+1

, n = nl,

0, otherwise.

Since M + (−M) = Z, we have only finite nl’s with nl + 1 /∈ M .
Let L be the left regular isometric representation on l2(M) and put U =

L∗
m0

Lm0+1+Kn1+· · ·+Knk−1
+
∑

Fl. The compact operator algebra K(l2(M))

is contained in W(M) because W(M) acts irreducibly on l2(M), and thus U is
contained in W(M). We can see that the operator U translates the elements of
the canonical orthonormal basis {δn | n ∈ M} of l2(M) to the left, one by one.
If we put the C∗-subalgebra U of W (M) generated by U , then U is isomorphic
to the Toeplitz algebra.

Eventually, Lm0 and Lm0+1 generates W(M), so it is enough to show that
Lm0 and Lm0+1 can be written as U + {suitable operators in U} in order to
say that U generates W(M). So we consider Um0 and Um0+1. Since the terms
of Um0 containing Ki are removed,

Um0 = (L∗
m0

Lm0+1)
m0 +

∑
(L∗

m0
Lm0+1)

s1F s2
j1
(L∗

m0
Lm0+1)

s3 · · ·F sq
jp
,
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where s1 + · · ·+ sq = m0 and si may be zero. In order to make up the gaps of
(L∗

m0
Lm0+1)

m0 we consider compact operators Li’s for 1 ≤ i ≤ k − 1, defined
by

Li(δn) =

{
Lm0(δn), n = ni,

0, otherwise.

Next, if there exist elements nl between m0 +1 and 2m0 − 2 in the usual order
of N such that nl + j /∈ M for some 1 ≤ j ≤ m0 − 2, then we define compact
operators Ql as follows;

Ql(δn) =

{
Lm0(δn), n = nl,

0, otherwise.

Due to the compact operators Li and Ql, we have

Lm0 = Um0 +
∑
i

Li +
∑
l

Ql −
∑

(L∗
m0

Lm0+1)
s1F s2

j1
(L∗

m0
Lm0+1)

s3 · · ·F sq
jp
.

Similarly, Lm0+1 = Um0+1+T for a suitable compact operator T . Therefore,
U generates W(M) and W(M) is isomorphic to the Toeplitz algebra T . □

In Theorem 2.1 we show that the uniqueness property implies the weakly
unperforatedness. Even though we don’t show that the converse of Theorem
2.1 is true, we can have many examples of strongly perforated group (G,M)
whose the Wiener-Hopf algebraW(G,M) are not isomorphic to their semigroup
C∗-algebras. The semigroups in the above theorem are one of these examples.
The semigroups (Z,M)’s in the above theorem except M = N are strongly
perforated, We can see that their Wiener-Hopf C∗-algebras W(Z,M) in the
above theorem can not be isomorphic to their semigroup C∗-algebras. Even
though W(Z,M)’s are isomorphic to the Toeplitz algebra, W(Z,M)’s are not
isomorphic to C∗(M) except M = N. From the very reason it looks very
strangely and interesting. We can give an example of a strongly perforated
semigroup, which can show the above statement.

Example 3.3. If M1 is the subsemigroup of N generated by 3 and 4 in the ex-
ample 2.2, then by Theorem 3.2, W(M1) is isomorphic to the Toeplitz algebra.
We consider two operators of rank one K0 and F1 defined by

K0(δn) =

{
δ3, if n = 0,

0, otherwise,

and

F1(δn) =

{
δ6, if n = 4,

0, otherwise.

If we put U = L∗
3L4 + K0 + F1, then U generates W(M1). As we see in

Example 2.2 W(M1) is not isomorphic to the semigroup C∗-algebra C∗(M1)
The semigroup M1 = {0, 3, 4, 6, 7, 8, 9, 10, . . . } is strongly perforated, and not
quasi-lattice group.
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The following examples show that there exist isometric representations of
subsemigroups of free groups and abelian groups which can not be factored
through the left regular isometric representations. Nica showed [12] that the
quasi-lattice ordered group is amenable if and only if every covariant repre-
sentation can be factored through the left regular isometric representation and
also showed that the quasi-lattice abelian ordered group and the free group are
amenable quasi-lattice groups. It seems that the quasi-lattice ordered group
is a very appropriate concept for the universal property of the Wiener-Hopf
C∗-algebras. So we can see that the Wiener-Hopf C∗-algebra W(M) and the
semigroup C∗-algebra C∗(M) can be isomorphic only for the particular semi-
groups.

Example 3.4. Let F2 be a free group with two generators z1 and z2 and
F+

2 = {zϵi1i1
z
ϵi2
i2

. . . z
ϵin
in

| ij = 1 or 2, ϵij = 1} be a subsemigroup of F2. Let L
be the left regular isometric representation of F+

2 on l2(F+
2 ) and W be another

isometric representation of F+
2 to l2(N)⊕ l2(N) defined by Wz1 = ( S 0

0 S ), Wz2 =
( S 0
0 I ), where S is the unilateral shift on l2(N). The isometric representation

W of F+
2 can’t be factored through the left regular isometric representation of

F+
2 because the Lzi ’s are isometries with orthogonal ranges for i = 1, 2, but

Wz1W
∗
z1 is not orthogonal to Wz2W

∗
z2 .

Example 3.5. Let G = Z × Z/2Z and M be the subsemigroup generated by
m1 = (1, 0), m2 = (1, 1 mod 2), and (0, 0). If W is an isometric representation
of M on a non-zero Hilbert space and W (mi) = Wi for i = 1, 2, then W 2

1 = W 2
2

and W1W2 = W2W1. If we look at the left regular isometric representation L
of M on l2(M), we can see that L satisfies another relation:

(L1L∗
1)(L2L∗

2) = (L2L∗
2)(L1L∗

1).

This relation does not hold for arbitrary isometric representation of M . For
example, if a Hilbert space K is l2(N)⊕ l2(N), S is the unilateral shift on l2(N),
and V is an isometric representation of M on the Hilbert space K defined by

Vm1 =

(
S 0
0 S

)
, Vm2 =

1√
2

(
S S2

1 −S

)
,

then V does not satisfy the above relation.
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