On the Tarry-Escott and Related Problems for 2×2 matrices over \mathbb{Q}

Supawadee Prugsapitak* and Walisa Intarapak
Algebra and Applications Research Unit, Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
e-mail: supawadee.p@psu.ac.th and walisa.p@hotmail.com
Vichian Laohakosol
Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
e-mail: fscivil@ku.ac.th

Abstract. Reduced solutions of size 2 and degree n of the Tarry-Escott problem over $M_{2}(\mathbb{Q})$ are determined. As an application, the diophantine equation $\alpha A^{n}+\beta B^{n}=$ $\alpha C^{n}+\beta D^{n}$, where α, β are rational numbers satisfying $\alpha+\beta \neq 0$ and $n \in\{1,2\}$, is completely solved for $A, B, C, D \in M_{2}(\mathbb{Q})$.

1. Introduction

A Diophantine equation is an equation, usually with integral or rational coefficients, in which the sought-after unknowns are also integers. In 1989, Vaserstein [6] suggested solving classical problems of number theory substituting the ring \mathbb{Z} by the ring $M_{2}(\mathbb{Z})$ of 2×2 integral matrices. Some problems become easier and some give us interesting results. The Tarry-Escott problem is a classical problem in number theory which asks one to find two distinct multisets of integers $\left\{a_{1}, \ldots, a_{n}\right\}$ and $\left\{b_{1}, \ldots, b_{n}\right\}$ such that

$$
\sum_{i=1}^{n} a_{i}^{j}=\sum_{i=1}^{n} b_{i}^{j}
$$

for $j=1,2, \ldots, k$. We call n the size of the solution and k the degree. We abbreviate the above system by writing

$$
\left\{a_{1}, \ldots, a_{n}\right\}={ }_{k}\left\{b_{1}, \ldots, b_{n}\right\}
$$

* Corresponding Author.

Received October 31, 2022; revised July 2, 2023; accepted July 5, 2023.
2020 Mathematics Subject Classification: 11C99.
Key words and phrases: Diophantine Equation, Matrix Equation, Tarry-Escott Problem.

Solutions with $k=n-1$ are called ideal solutions. The Tarry-Escott problem has been extensively investigated in the literature; see for instance [1], [2] and also [5].

In 2006, Choudhry [3] introduced a matrix analog of the Tarry-Escott problem by considering the problem over $M_{2}(\mathbb{Z})$. The Tarry-Escott problem over $M_{m}(R)$ for a given ring R can be stated as follows: given $k, m, n \in \mathbb{N}$ and a ring R, two different multisets

$$
A=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \quad \text { and } \quad B=\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}
$$

where $A_{i}, B_{i} \in M_{m}(R) \backslash\{\underline{0}\}$, constitute a non-trivial solution of the Tarry-Escott problem of size n and degree k over $M_{m}(R)$ if

$$
\sum_{i=1}^{n} A_{i}^{j}=\sum_{i=1}^{n} B_{i}^{j} \quad(j=1,2, \ldots, k)
$$

abbreviated as $\left\{A_{1}, \ldots, A_{n}\right\}={ }_{k}\left\{B_{1}, \ldots, B_{n}\right\}$. Choudhry [3] obtained, in parametric terms, two distinct pairs of matrices A_{1}, A_{2} and B_{1}, B_{2} in $M_{2}(\mathbb{Z})$ such that $A_{1}^{n}+A_{2}^{n}=B_{1}^{n}+B_{2}^{n}$ holds simultaneously for all integral values of n, whether positive or negative. This gives a non-trivial solution of the matrix analog of the Tarry-Escott problem of infinite degree and size 2. Using this solution, he obtained an arbitrarily long multigrade chain of matrices in $M_{2}(\mathbb{Z})$ such that

$$
A_{11}^{n}+A_{12}^{n}=A_{21}^{n}+A_{22}^{n}=\cdots=A_{m 1}^{n}+A_{m 2}^{n}
$$

which also holds simultaneously for all integral values of n, whether positive or negative. Further, he obtained a parametric solution over $M_{2}(\mathbb{Z})$ of the equation

$$
A_{1}^{n}+A_{2}^{n}+A_{3}^{n}=B_{1}^{n}+B_{2}^{n}+B_{3}^{n}
$$

for all integral values of n. This solution leads to another arbitrarily long multigrade chain of matrices in $M_{2}(\mathbb{Z})$.

In the present work, we present a different approach to obtain solutions of the Tarry-Escott problem over $M_{2}(\mathbb{Z})$; our approach also provides additional solutions different from those of Choudhry. As an application of our main result, general solutions, over $M_{2}(\mathbb{Q})$, are determined for the diophantine equation

$$
\alpha A^{n}+\beta B^{n}=\alpha C^{n}+\beta D^{n}
$$

where $\alpha, \beta \in \mathbb{Q}$ with $\alpha+\beta \neq 0$ and $n \in\{1,2\}$.

2. Main Results

First, we prove an auxiliary result which will be used later.
Lemma 2.1. Let m and n be positive integers, let $A_{i}, B_{i} \in M_{m}(\mathbb{Q}) \quad(i=1, \ldots, n)$, and let $\alpha_{i} \in \mathbb{Q}$. If

$$
\sum_{i=1}^{n} \alpha_{i} A_{i}=\sum_{i=1}^{n} \alpha_{i} B_{i} \quad \text { and } \quad \sum_{i=1}^{n} \alpha_{i} A_{i}^{2}=\sum_{i=1}^{n} \alpha_{i} B_{i}^{2}
$$

then

$$
\sum_{i=1}^{n} \alpha_{i}\left(A_{i}+C\right)=\sum_{i=1}^{n} \alpha_{i}\left(B_{i}+C\right) \quad \text { and } \quad \sum_{i=1}^{n} \alpha_{i}\left(A_{i}+C\right)^{2}=\sum_{i=1}^{n} \alpha_{i}\left(B_{i}+C\right)^{2}
$$

for any $C \in M_{m}(\mathbb{Q})$.
Proof. Since $\sum_{i=1}^{n} \alpha_{i} A_{i}=\sum_{i=1}^{n} \alpha_{i} B_{i}$ and $\sum_{i=1}^{n} \alpha_{i} A_{i}^{2}=\sum_{i=1}^{n} \alpha_{i} B_{i}^{2}$, it is easy to see that

$$
\sum_{i=1}^{n} \alpha_{i}\left(A_{i}+C\right)=\sum_{i=1}^{n} \alpha_{i}\left(B_{i}+C\right)
$$

and

$$
\begin{aligned}
\sum_{i=1}^{n} \alpha_{i}\left(A_{i}+C\right)^{2} & =\sum_{i=1}^{n} \alpha_{i} A_{i}^{2}+\left(\sum_{i=1}^{n} \alpha_{i} A_{i}\right) C+C\left(\sum_{i=1}^{n} \alpha_{i} A_{i}\right)+\sum_{i=1}^{n} \alpha_{i} C^{2} \\
& =\sum_{i=1}^{n} \alpha_{i} B_{i}^{2}+\left(\sum_{i=1}^{n} \alpha_{i} B_{i}\right) C+C\left(\sum_{i=1}^{n} \alpha_{i} B_{i}\right)+\sum_{i=1}^{n} \alpha_{i} C^{2} \\
& =\sum_{i=1}^{n} \alpha_{i}\left(B_{i}+C\right)^{2} .
\end{aligned}
$$

Immediate from Lemma 2.1 is
Corollary 2.2. Let m and n be positive integers and let

$$
A=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \quad \text { and } \quad B=\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}
$$

be subsets of $M_{m}(\mathbb{Q})$. If $A={ }_{2} B$, then for any matrix $C \in M_{m}(\mathbb{Q})$ we have

$$
A+C={ }_{2} B+C
$$

where
$A+C=\left\{A_{1}+C, A_{2}+C, \ldots, A_{n}+C\right\}, B+C=\left\{B_{1}+C, B_{2}+C, \ldots, B_{n}+C\right\}$.
We next define equivalent solutions.

Definition 2.3. Let k, m and n be positive integers. Let

$$
A=\left\{A_{1}, \ldots, A_{n}\right\}, B=\left\{B_{1}, \ldots, B_{n}\right\}, X=\left\{X_{1}, \ldots, X_{n}\right\}, Y=\left\{Y_{1}, \ldots, Y_{n}\right\}
$$

be subsets of $M_{m}(\mathbb{Q})$. We say that $A={ }_{k} B$ and $X={ }_{k} Y$ are equivalent if there exist M and N in $M_{m}(\mathbb{Q})$ such that for all i,

$$
X_{i}=M A_{i}+N \quad \text { and } \quad Y_{i}=M B_{i}+N .
$$

Definition 2.4. Let k, m and n be positive integers. Let $A=\left\{A_{1}, \ldots, A_{n}\right\}, B=$ $\left\{B_{1}, \ldots, B_{n}\right\}$ be subsets of $M_{m}(\mathbb{Q})$. Then a solution $A={ }_{k} B$ is called a reduced solution if

$$
\sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n} B_{i}=\underline{0} .
$$

The concept of being reduced is useful because of the next result.
Theorem 2.5. Let m and n be positive integers. Every solution of size n and degree 2 of the Tarry-Escott Problem over $M_{m}(\mathbb{Q})$ is equivalent to a reduced solution.
Proof. Let $A=\left\{A_{1}, \ldots, A_{n}\right\}$ and $B=\left\{B_{1}, \ldots, B_{n}\right\}$ be two subsets of $M_{m}(\mathbb{Q})$ such that $A={ }_{2} B$. Now let $X=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ and $Y=\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$, where $X_{i}=A_{i}-S, Y_{i}=B_{i}-S$ for $i=1, \ldots, n$ and $S=\left(A_{1}+\cdots+A_{n}\right) / n$. It is easy to see that

$$
\sum_{i=1}^{n} X_{i}=\sum_{i=1}^{n} Y_{i}=\underline{0} .
$$

Thus $X={ }_{2} Y$ is a reduced solution. Since $A={ }_{2} B$ and $X={ }_{2} Y$, by Lemma 2.1, $A={ }_{2} B$ is equivalent to a reduced solution $X={ }_{2} Y$.

We now consider the so-called symmetric solutions of the Tarry-Escott Problem over $M_{2}(\mathbb{Q})$; these are integral matrices X and Y satisfying

$$
X^{n}+(-X)^{n}=Y^{n}+(-Y)^{n},
$$

for all positive integers n. It suffices to show that $X^{2}=Y^{2}$. We first recall a result from [4].
Theorem 2.6. Let $c \in \mathbb{C}$. Suppose that X and Y are two elements in $M_{2}(\mathbb{C})$ such that $X Y \neq Y X$. If $X^{2}+Y^{2}=c I$ where I is the identity matrix, then $\operatorname{tr}(X)=\operatorname{tr}(Y)=0$ and $\operatorname{det} X+\operatorname{det} Y=-c$.

We prove now another auxiliary result.
Lemma 2.7. Suppose X and Y are nonzero elements in $M_{2}(\mathbb{Q})$ and $X \neq Y$. Then $X^{2}=Y^{2}$ and $X Y=Y X$ if and only if there exist nonzero matrices $A, B \in$ $M_{2}(\mathbb{Q})$ such that

$$
A B=B A=\underline{0}, X=\frac{A+B}{2} \quad \text { and } \quad Y=\frac{A-B}{2} .
$$

Proof. Suppose $X^{2}=Y^{2}$ and $X Y=Y X$. Next, we let $A=X+Y$ and $B=X-Y$. Then the results follows easily. For the converse, we suppose that $X=(A+B) / 2$ and $Y=(A-B) / 2$ where $A B=B A=\underline{0}$. Then it is easy to see that $X Y=Y X$ and $X^{2}=Y^{2}$. Hence the converse holds as desired.

From Lemma 2.7, in order to find commutative solutions of $X^{n}+(-X)^{n}=$ $Y^{n}+(-Y)^{n}$ for all positive integer n, it suffices to solve for matrices A and B such that $A B=B A=\underline{0}$, and this leads us to our first main result.
Theorem 2.8. Suppose X and Y are nonzero elements in $M_{2}(\mathbb{Q})$. Then $\{X,-X\}={ }_{2}\{Y,-Y\}$ if and only if X, Y belong to one of the following two classes.

1. $X Y \neq Y X, \quad X^{2}=Y^{2}, X=\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right) \quad$ and $\quad Y=\left(\begin{array}{cc}w & x \\ y & -w\end{array}\right)$ where a, b, c, w, x, y are rationals such that $a^{2}+b c=w^{2}+x y$ and $(b x \neq c x$ or $a x \neq b w$ or $a y \neq c w)$.
2. $X Y=Y X, X^{2}=Y^{2}$, and there exist nonzero matrices $A, B \in M_{2}(\mathbb{Q})$ such that

$$
A B=B A=\underline{0}, X=\frac{A+B}{2} \quad \text { and } \quad Y=\frac{A-B}{2}
$$

where A and B are of the following forms:
(a) $A=\left(\begin{array}{ll}a & m a \\ c & m c\end{array}\right)$ and $B=\left(\begin{array}{cc}w & x \\ -\frac{w}{m} & -\frac{x}{m}\end{array}\right)$ where acmw $\neq 0$ and $a w+x c=$ 0 ,
(b) $A=\left(\begin{array}{ll}0 & 0 \\ c & d\end{array}\right)$ and $B=\left(\begin{array}{cc}w & 0 \\ -\frac{c w}{d} & 0\end{array}\right)$ where $c d w \neq 0$,
(c) $A=\left(\begin{array}{ll}0 & b \\ 0 & d\end{array}\right)$ and $B=\left(\begin{array}{cc}w & -\frac{b w}{d} \\ 0 & 0\end{array}\right)$ where $b d w \neq 0$,
(d) $A=\left(\begin{array}{ll}0 & 0 \\ 0 & d\end{array}\right)$ and $B=\left(\begin{array}{ll}w & 0 \\ 0 & 0\end{array}\right)$ where $d w \neq 0$,
(e) $A=\left(\begin{array}{ll}0 & 0 \\ c & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ y & 0\end{array}\right)$ where $c y \neq 0$,
(f) $A=\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)$ where $b x \neq 0$.

Proof. Suppose $X^{2}=Y^{2}$.
Case 1: $X Y \neq Y X$. Then by Theorem 2.6, $\operatorname{tr}(X)=\operatorname{tr}(Y)=0$ and $\operatorname{det} X+$ $\operatorname{det} i Y=0$. Let $X=\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right), Y=\left(\begin{array}{cc}w & x \\ y & -w\end{array}\right)$ where $a, b, c, w, x, y \in \mathbb{Q}$. Since $\operatorname{det} X+\operatorname{det} i Y=0, \operatorname{det} X=\operatorname{det} Y$. This implies that $a^{2}+b c=w^{2}+x y$ as desired. Now note that $X Y=\left(\begin{array}{ll}a w+b y & a x-b w \\ c w-a y & c x+a w\end{array}\right) \quad$ and $\quad Y X=\left(\begin{array}{ll}a w+c x & b w-a x \\ a y-c w & b y+a w\end{array}\right)$.
Thus we have $b y \neq c x$ or $a x \neq b w$ or $a y \neq c w$.

Case 2: $X Y=Y X$. By Lemma 2.7, there exist $A, B \in M_{2}(\mathbb{Q})$ such that $A B=$ $B A=\underline{0}$. Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\left(\begin{array}{ll}w & x \\ y & z\end{array}\right)$. Thus we have the following system of equations:

$$
\begin{align*}
& a w+b y=a w+c x=0 \tag{2.1}\\
& a x+b z=b w+x d=0 \tag{2.2}\\
& c w+d y=a y+c z=0 \tag{2.3}\\
& c x+d z=b y+d z=0 \tag{2.4}
\end{align*}
$$

Since $A B=\underline{0}$, this implies that $\operatorname{det} A=0$ or $\operatorname{det} B=0$. We may assume that $\operatorname{det} A=0$. Thus $a d-b c=0$.
Case 2.1: $a b c d \neq 0$. Since $a d-b c=0, a / b=c / d$. Let $m=b / a$. By (2.1), $y=-w / m$. By $(2.2), z=-x / m$. Thus $A=\left(\begin{array}{ll}a & m a \\ c & m c\end{array}\right)$ and $B=\left(\begin{array}{cc}w & x \\ -\frac{w}{m} & -\frac{x}{m}\end{array}\right)$ as desired.
Case 2.2: $a d=b c=0$. Thus there are 4 cases to consider.
Case 2.2.1: $a=b=0$. Then (2.1)-(2.4) imply that

$$
c x=x d=c w+d y=c z=c x+d z=d z=0
$$

Since at least one of c and d is nonzero, we have $x=z=0$. If $c d \neq 0$ then $c w+d y=0$. Then $y=-c w / d$. Thus we obtain solutions of the form $A=\left(\begin{array}{ll}0 & 0 \\ c & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}w & 0 \\ -\frac{c w}{d} & d\end{array}\right)$ where $c d w \neq 0$.
Case 2.2.1(i): $c=0$. Then $y=0$. The fact that A, B are nonzero matrices implies $d w \neq 0$. Thus we obtain solutions of the form $A=\left(\begin{array}{ll}0 & 0 \\ 0 & d\end{array}\right)$ and $B=\left(\begin{array}{ll}w & 0 \\ 0 & 0\end{array}\right)$ where $d w \neq 0$.
Case 2.2.1(ii): $d=0$. Then $w=0$. Again since A, B are nonzero matrices, we have $c y \neq 0$. So we obtain solutions of the form $A=\left(\begin{array}{ll}0 & 0 \\ c & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ y & 0\end{array}\right)$ where $c y \neq 0$.
Case 2.2.2: $a=c=0$. Then (2.1)-(2.4) imply that

$$
b y=b z=b w+d x=d y=d z=b y+d z=0
$$

Since at least one of b and d is nonzero, we have $y=z=0$.
Case 2.2.2(i): $b d \neq 0$. Then $b w+d x=0$ and $x=-b w / d$. Thus we obtain solutions of the form $A=\left(\begin{array}{ll}0 & b \\ 0 & d\end{array}\right)$ and $B=\left(\begin{array}{cc}w & -\frac{b w}{d} \\ 0 & 0\end{array}\right)$ where $b d w \neq 0$.
Case 2.2.2(ii): $b=0$. Then $x=0$. The fact that A, B are nonzero matrices implies $d w \neq 0$. Thus we obtain solutions of the form $A=\left(\begin{array}{ll}0 & 0 \\ 0 & d\end{array}\right)$ and $B=\left(\begin{array}{ll}w & 0 \\ 0 & 0\end{array}\right)$ where $d w \neq 0$.

Case 2.2.2(iii): $d=0$. Then $w=0$. Again since A and B are nonzero matrices, we have $b x \neq 0$. So we obtain solutions of the form $A=\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)$ where $b x \neq 0$.

For the case $b=d=0$ and $c=d=0$, we proceed similarly and obtain solutions as shown in the previous cases. The converse is easily checked.

We next provide an example.
Example 2.9. Let $A=\left(\begin{array}{cc}1 & 2 \\ -1 & -2\end{array}\right), B=\left(\begin{array}{cc}4 & 4 \\ -2 & -2\end{array}\right)$. It is easy to see that $A B=B A=\underline{0}$. Next, we let $X=(A+B) / 2$ and $Y=(A-B) / 2$. Then

$$
X=\left(\begin{array}{cc}
5 / 2 & 3 \\
-3 / 2 & -2
\end{array}\right), Y=\left(\begin{array}{cc}
-3 / 2 & -1 \\
1 / 2 & 0
\end{array}\right)
$$

By Lemma 2.7, $X Y=Y X$ and $X^{2}=Y^{2}$. Thus $\{X,-X\}={ }_{n}\{Y,-Y\}$ for any positive integer n. Moreover, since X and Y are nonsingular matrices, $\{X,-X\}={ }_{n}\{Y,-Y\}$ for all integer n.

We proceed now to our final task which is to solve

$$
\alpha_{1} X_{1}^{n}+\alpha_{2} X_{2}^{n}=\alpha_{1} Y_{1}^{n}+\alpha_{2} Y_{2}^{n}
$$

for $n=1$ and 2 over $M_{2}(\mathbb{Q})$. We need two more auxiliary results.
Lemma 2.10. Let m be a positve integer. Let $A_{1}, A_{2}, B_{1}, B_{2}$ be matrices in $M_{m}(\mathbb{Q})$. Let α_{1} and α_{2} be nonzero rational numbers such that $\alpha_{1}+\alpha_{2} \neq 0$. If

$$
\alpha_{1} A_{1}^{n}+\alpha_{2} A_{2}^{n}=\alpha_{1} B_{1}^{n}+\alpha_{2} B_{2}^{n}
$$

for $n=1,2$ then there exist A_{i}^{\prime} and B_{i}^{\prime} in $M_{m}(\mathbb{Q})$ such that

$$
\alpha_{1} A_{1}^{\prime}+\alpha_{2} A_{2}^{\prime}=\underline{0}=\alpha_{1} B_{1}^{\prime}+\alpha_{2} B_{2}^{\prime} \quad \text { and } \quad \alpha_{1} A_{1}^{\prime 2}+\alpha_{2} A_{2}^{\prime 2}=\alpha_{1} B_{1}^{\prime 2}+\alpha_{2} B_{2}^{\prime 2}
$$

Proof. Suppose $\alpha_{1} A_{1}^{n}+\alpha_{2} A_{2}^{n}=\alpha_{1} B_{1}^{n}+\alpha_{2} B_{2}^{n}$ for $n=1,2$ and $\alpha_{1} \alpha_{2}\left(\alpha_{1}+\alpha_{2}\right) \neq 0$. For $i=1,2$, we define

$$
S=\alpha_{1} A_{1}+\alpha_{2} A_{2}, A_{i}^{\prime}=A_{i}-\frac{S}{\alpha_{1}+\alpha_{2}}, B_{i}^{\prime}=B_{i}-\frac{S}{\alpha_{1}+\alpha_{2}}
$$

Then $\alpha_{1} A_{1}^{\prime}+\alpha_{2} A_{2}^{\prime}=\alpha_{1} B_{1}^{\prime}+\alpha_{2} B_{2}^{\prime}=0$. Since $\alpha_{1} A_{1}^{n}+\alpha_{2} A_{2}^{n}=\alpha_{1} B_{1}^{n}+\alpha_{2} B_{2}^{n}$ for $n=1,2$, by Lemma 2.1, we have $\alpha_{1} A_{1}^{\prime 2}+\alpha_{2} A_{2}^{\prime 2}=\alpha_{1} B_{1}^{\prime 2}+\alpha_{2} B_{2}^{\prime 2}$.

Lemma 2.11. Let m be a positive integer. Let α_{1} and α_{2} be nonzero rational numbers such that $\alpha_{1}+\alpha_{2} \neq 0$. There exist $A_{1}, A_{2}, B_{1}, B_{2} \in M_{m}(\mathbb{Q})$ such that
$\alpha_{1} A_{1}+\alpha_{2} A_{2}=\alpha_{1} B_{1}+\alpha_{2} B_{2}=\underline{0}$ and $\alpha_{1} A_{1}^{2}+\alpha_{2} A_{2}^{2}=\alpha_{1} B_{1}^{2}+\alpha_{2} B_{2}^{2}$ if and only if $A_{1}^{2}=B_{1}^{2}$.
Proof. Suppose $\alpha_{1} A_{1}+\alpha_{2} A_{2}=\alpha_{1} B_{1}+\alpha_{2} B_{2}=\underline{0}, A_{2}=\left(-\alpha_{1} A_{1}\right) / \alpha_{2}$ and $B_{2}=$ $\left(-\alpha_{1} B_{1}\right) / \alpha_{2}$. Then

$$
\left(\alpha_{1}+\alpha_{1}^{2} / \alpha_{2}\right) A_{1}^{2}=\alpha_{1} A_{1}^{2}+\alpha_{2} A_{2}^{2}=\alpha_{1} B_{1}^{2}+\alpha_{2} B_{2}^{2}=\left(\alpha_{1}+\alpha_{1}^{2} / \alpha_{2}\right) B_{1}^{2}
$$

Thus $A_{1}^{2}=B_{1}^{2}$.
For the converse, suppose $A_{2}=\left(-\alpha_{1} A_{1}\right) / \alpha_{2}$ and $B_{2}=\left(-\alpha_{1} B_{1}\right) / \alpha_{2}$. Then

$$
\alpha_{2} A_{2}+\alpha_{1} A_{1}=\alpha_{1} B_{1}+\alpha_{2} B_{2}=\underline{0}
$$

Since $A_{1}^{2}=B_{1}^{2}$, we obtain that

$$
\alpha_{1} A_{1}^{2}+\alpha_{2} A_{2}^{2}=\alpha_{1} B_{1}^{2}+\alpha_{2} B_{2}^{2}
$$

Combining the results of Lemmas 2.10 and 2.11, we arrive at our final main result.

Theorem 2.12. Let α_{1} and α_{2} be nonzero rational numbers such that $\alpha_{1}+\alpha_{2} \neq 0$. Then all solutions of the diophantine equation

$$
\alpha_{1} X_{1}^{n}+\alpha_{2} X_{2}^{n}=\alpha_{1} Y_{1}^{n}+\alpha_{2} Y_{2}^{n}
$$

for $n=1$ and 2 over $M_{2}(\mathbb{Q})$ are the form $X_{1}=A_{1}+C, X_{2}=\left(-\alpha_{1} A_{1}\right) / \alpha_{2}+C$, $Y_{1}=B_{1}+C, Y_{2}=\left(-\alpha_{1} B_{1}\right) / \alpha_{2}+C$ where $A_{1}^{2}=B_{1}^{2}$ and $C \in M_{2}(\mathbb{Q})$.

We end this paper with an example.
Example 2.13. We show how to solve the following system of equations

$$
2 X_{1}^{n}+3 X_{2}^{n}=2 Y_{1}^{n}+3 Y_{2}^{n} \quad(1 \leq n \leq 2)
$$

over $M_{2}(\mathbb{Q})$.
By Lemma 2.10, we can restrict our attention to find solutions $A_{1}, A_{2}, B_{1}, B_{2}$ in $M_{2}(\mathbb{Q})$ such that

$$
2 A_{1}+3 A_{2}=2 B_{1}+3 B_{2}=\underline{0} \quad \text { and } \quad 2 A_{1}^{2}+3 A_{2}^{2}=2 B_{1}^{2}+3 B_{2}^{2} .
$$

By Theorem 2.8, it suffices to find $A_{1}, B_{1} \in M_{2}(\mathbb{Q})$ such that $A_{1}^{2}=B_{1}^{2}$. We work out some solutions for two different cases.
Case 1: $A_{1} B_{1}=B_{1} A_{1}$. Let $A_{1}=\left(\begin{array}{cc}5 / 2 & 3 \\ -3 / 2 & -2\end{array}\right)$ and $B_{1}=\left(\begin{array}{cc}-3 / 2 & -1 \\ 1 / 2 & 0\end{array}\right)$. Then we have

$$
A_{2}=\frac{-2}{3} A_{1}=\left(\begin{array}{cc}
-5 / 3 & -2 \\
1 & 4 / 3
\end{array}\right) \text { and } B_{2}=\frac{-2}{3} B_{1}\left(\begin{array}{cc}
1 & 2 / 3 \\
-1 / 3 & 0
\end{array}\right)
$$

Case 2: $A_{1} B_{1} \neq B_{1} A_{1}$. Let $A_{1}=\left(\begin{array}{cc}2 & 1 \\ -4 & -2\end{array}\right)$ and $B_{1}=\left(\begin{array}{cc}3 & 1 \\ -9 & -3\end{array}\right)$. Then

$$
A_{2}=\frac{-2}{3} A_{1}=\left(\begin{array}{cc}
-4 / 3 & -2 / 3 \\
8 / 3 & 4 / 3
\end{array}\right) \text { and } B_{2}=\frac{-2}{3} B_{1}=\left(\begin{array}{cc}
-2 & -2 / 3 \\
6 & 2
\end{array}\right)
$$

Therefore,

$$
2\left(A_{1}+C\right)^{n}+3\left(A_{2}+C\right)^{n}=2\left(B_{1}+C\right)^{n}+3\left(B_{2}+C\right)^{n}
$$

for $n=1,2$ where $C \in M_{2}(\mathbb{Q})$.

Acknowledgements. We would like to express our gratitude to the referee(s) for comments and suggestions.

References

[1] A. Alpers and R. Tijdeman, The two-dimensional Prouhet-Tarry-Escott problem, J. Number Theory, 123(2)(2007), 403-412.
[2] P. Borwein and C. Ingalls, The Prouhet-Tarry-Escott problem revisited, Enseign. Math., 40(2)(1994), 3-27.
[3] A. Choudhry, Matrix analogues of the Tarry-Escott problem, multigrade chains and the equation of Fermat, Math. Student, 75(2006), 215-224.
[4] B. Cohen, Generalized Pell Equation for 2×2 matrices, Discuss. Math. GAA, 37 (2017), 13-30.
[5] H. L. Dorwart and O. E. Brown, The Tarry-Escott Problem, Amer. Math. Monthly, 44(10)(1937), 613-626.
[6] L. N. Vaserstein, Noncommutative number theory, in Algebraic K-theory and Algebraic Number Theory, Contemp. Math. 83, Amer. Math. Soc., (1989), 445-449.

