KYUNGPOOK Math. J. 63(2023), 345-353 https://doi.org/10.5666/KMJ.2023.63.3.345 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

On the Tarry-Escott and Related Problems for 2×2 matrices over $\mathbb Q$

SUPAWADEE PRUGSAPITAK* AND WALISA INTARAPAK Algebra and Applications Research Unit, Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand e-mail: supawadee.p@psu.ac.th and walisa.p@hotmail.com

VICHIAN LAOHAKOSOL Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand e-mail: fscivil@ku.ac.th

ABSTRACT. Reduced solutions of size 2 and degree n of the Tarry-Escott problem over $M_2(\mathbb{Q})$ are determined. As an application, the diophantine equation $\alpha A^n + \beta B^n = \alpha C^n + \beta D^n$, where α, β are rational numbers satisfying $\alpha + \beta \neq 0$ and $n \in \{1, 2\}$, is completely solved for $A, B, C, D \in M_2(\mathbb{Q})$.

1. Introduction

A Diophantine equation is an equation, usually with integral or rational coefficients, in which the sought-after unknowns are also integers. In 1989, Vaserstein [6] suggested solving classical problems of number theory substituting the ring \mathbb{Z} by the ring $M_2(\mathbb{Z})$ of 2×2 integral matrices. Some problems become easier and some give us interesting results. The Tarry-Escott problem is a classical problem in number theory which asks one to find two distinct multisets of integers $\{a_1, \ldots, a_n\}$ and $\{b_1, \ldots, b_n\}$ such that

$$\sum_{i=1}^n a_i^j = \sum_{i=1}^n b_i^j$$

for j = 1, 2, ..., k. We call n the size of the solution and k the degree. We abbreviate the above system by writing

$$\{a_1,\ldots,a_n\} =_k \{b_1,\ldots,b_n\}.$$

^{*} Corresponding Author.

Received October 31, 2022; revised July 2, 2023; accepted July 5, 2023.

²⁰²⁰ Mathematics Subject Classification: 11C99.

Key words and phrases: Diophantine Equation, Matrix Equation, Tarry-Escott Problem.

Solutions with k = n - 1 are called ideal solutions. The Tarry-Escott problem has been extensively investigated in the literature; see for instance [1], [2] and also [5].

In 2006, Choudhry [3] introduced a matrix analog of the Tarry-Escott problem by considering the problem over $M_2(\mathbb{Z})$. The Tarry-Escott problem over $M_m(R)$ for a given ring R can be stated as follows: given $k, m, n \in \mathbb{N}$ and a ring R, two different multisets

$$A = \{A_1, A_2, \dots, A_n\}$$
 and $B = \{B_1, B_2, \dots, B_n\},\$

where $A_i, B_i \in M_m(R) \setminus \{\underline{0}\}$, constitute a non-trivial solution of the Tarry–Escott problem of size n and degree k over $M_m(R)$ if

$$\sum_{i=1}^{n} A_i^j = \sum_{i=1}^{n} B_i^j \qquad (j = 1, 2, \dots, k),$$

abbreviated as $\{A_1, \ldots, A_n\} =_k \{B_1, \ldots, B_n\}$. Choudhry [3] obtained, in parametric terms, two distinct pairs of matrices A_1, A_2 and B_1, B_2 in $M_2(\mathbb{Z})$ such that $A_1^n + A_2^n = B_1^n + B_2^n$ holds simultaneously for all integral values of n, whether positive or negative. This gives a non-trivial solution of the matrix analog of the Tarry-Escott problem of infinite degree and size 2. Using this solution, he obtained an arbitrarily long multigrade chain of matrices in $M_2(\mathbb{Z})$ such that

$$A_{11}^n + A_{12}^n = A_{21}^n + A_{22}^n = \dots = A_{m1}^n + A_{m2}^n,$$

which also holds simultaneously for all integral values of n, whether positive or negative. Further, he obtained a parametric solution over $M_2(\mathbb{Z})$ of the equation

$$A_1^n + A_2^n + A_3^n = B_1^n + B_2^n + B_3^n,$$

for all integral values of n. This solution leads to another arbitrarily long multigrade chain of matrices in $M_2(\mathbb{Z})$.

In the present work, we present a different approach to obtain solutions of the Tarry-Escott problem over $M_2(\mathbb{Z})$; our approach also provides additional solutions different from those of Choudhry. As an application of our main result, general solutions, over $M_2(\mathbb{Q})$, are determined for the diophantine equation

$$\alpha A^n + \beta B^n = \alpha C^n + \beta D^n,$$

where $\alpha, \beta \in \mathbb{Q}$ with $\alpha + \beta \neq 0$ and $n \in \{1, 2\}$.

346

2. Main Results

First, we prove an auxiliary result which will be used later.

Lemma 2.1. Let m and n be positive integers, let $A_i, B_i \in M_m(\mathbb{Q})$ (i = 1, ..., n), and let $\alpha_i \in \mathbb{Q}$. If

$$\sum_{i=1}^{n} \alpha_{i} A_{i} = \sum_{i=1}^{n} \alpha_{i} B_{i} \quad and \quad \sum_{i=1}^{n} \alpha_{i} A_{i}^{2} = \sum_{i=1}^{n} \alpha_{i} B_{i}^{2},$$

then

$$\sum_{i=1}^{n} \alpha_i (A_i + C) = \sum_{i=1}^{n} \alpha_i (B_i + C) \quad and \quad \sum_{i=1}^{n} \alpha_i (A_i + C)^2 = \sum_{i=1}^{n} \alpha_i (B_i + C)^2$$

for any $C \in M_m(\mathbb{Q})$.

Proof. Since $\sum_{i=1}^{n} \alpha_i A_i = \sum_{i=1}^{n} \alpha_i B_i$ and $\sum_{i=1}^{n} \alpha_i A_i^2 = \sum_{i=1}^{n} \alpha_i B_i^2$, it is easy to see that

$$\sum_{i=1}^{n} \alpha_i (A_i + C) = \sum_{i=1}^{n} \alpha_i (B_i + C)$$

and

$$\sum_{i=1}^{n} \alpha_i (A_i + C)^2 = \sum_{i=1}^{n} \alpha_i A_i^2 + (\sum_{i=1}^{n} \alpha_i A_i) C + C(\sum_{i=1}^{n} \alpha_i A_i) + \sum_{i=1}^{n} \alpha_i C^2$$
$$= \sum_{i=1}^{n} \alpha_i B_i^2 + (\sum_{i=1}^{n} \alpha_i B_i) C + C(\sum_{i=1}^{n} \alpha_i B_i) + \sum_{i=1}^{n} \alpha_i C^2$$
$$= \sum_{i=1}^{n} \alpha_i (B_i + C)^2. \qquad \Box$$

Immediate from Lemma 2.1 is

Corollary 2.2. Let *m* and *n* be positive integers and let

$$A = \{A_1, A_2, \dots, A_n\}$$
 and $B = \{B_1, B_2, \dots, B_n\}$

be subsets of $M_m(\mathbb{Q})$. If $A =_2 B$, then for any matrix $C \in M_m(\mathbb{Q})$ we have

$$A + C =_2 B + C$$

where

$$A + C = \{A_1 + C, A_2 + C, \dots, A_n + C\}, B + C = \{B_1 + C, B_2 + C, \dots, B_n + C\}.$$

We next define equivalent solutions.

Definition 2.3. Let k, m and n be positive integers. Let

$$A = \{A_1, \dots, A_n\}, B = \{B_1, \dots, B_n\}, X = \{X_1, \dots, X_n\}, Y = \{Y_1, \dots, Y_n\}$$

be subsets of $M_m(\mathbb{Q})$. We say that $A =_k B$ and $X =_k Y$ are equivalent if there exist M and N in $M_m(\mathbb{Q})$ such that for all i,

$$X_i = MA_i + N$$
 and $Y_i = MB_i + N$.

Definition 2.4. Let k, m and n be positive integers. Let $A = \{A_1, \ldots, A_n\}, B = \{B_1, \ldots, B_n\}$ be subsets of $M_m(\mathbb{Q})$. Then a solution $A =_k B$ is called a reduced solution if

$$\sum_{i=1}^{n} A_i = \sum_{i=1}^{n} B_i = \underline{0}.$$

The concept of being reduced is useful because of the next result.

Theorem 2.5. Let m and n be positive integers. Every solution of size n and degree 2 of the Tarry-Escott Problem over $M_m(\mathbb{Q})$ is equivalent to a reduced solution.

Proof. Let $A = \{A_1, \ldots, A_n\}$ and $B = \{B_1, \ldots, B_n\}$ be two subsets of $M_m(\mathbb{Q})$ such that $A =_2 B$. Now let $X = \{X_1, X_2, \ldots, X_n\}$ and $Y = \{Y_1, Y_2, \ldots, Y_n\}$, where $X_i = A_i - S$, $Y_i = B_i - S$ for $i = 1, \ldots, n$ and $S = (A_1 + \cdots + A_n)/n$. It is easy to see that

$$\sum_{i=1}^{n} X_i = \sum_{i=1}^{n} Y_i = \underline{0}.$$

Thus $X =_2 Y$ is a reduced solution. Since $A =_2 B$ and $X =_2 Y$, by Lemma 2.1, $A =_2 B$ is equivalent to a reduced solution $X =_2 Y$.

We now consider the so-called symmetric solutions of the Tarry-Escott Problem over $M_2(\mathbb{Q})$; these are integral matrices X and Y satisfying

$$X^{n} + (-X)^{n} = Y^{n} + (-Y)^{n},$$

for all positive integers n. It suffices to show that $X^2 = Y^2$. We first recall a result from [4].

Theorem 2.6. Let $c \in \mathbb{C}$. Suppose that X and Y are two elements in $M_2(\mathbb{C})$ such that $XY \neq YX$. If $X^2 + Y^2 = cI$ where I is the identity matrix, then $\operatorname{tr}(X) = \operatorname{tr}(Y) = 0$ and $\det X + \det Y = -c$.

We prove now another auxiliary result.

Lemma 2.7. Suppose X and Y are nonzero elements in $M_2(\mathbb{Q})$ and $X \neq Y$. Then $X^2 = Y^2$ and XY = YX if and only if there exist nonzero matrices $A, B \in M_2(\mathbb{Q})$ such that

$$AB = BA = \underline{0}, X = \frac{A+B}{2}$$
 and $Y = \frac{A-B}{2}$.

348

Proof. Suppose $X^2 = Y^2$ and XY = YX. Next, we let A = X + Y and B = X - Y. Then the results follows easily. For the converse, we suppose that X = (A + B)/2 and Y = (A - B)/2 where AB = BA = 0. Then it is easy to see that XY = YX and $X^2 = Y^2$. Hence the converse holds as desired.

From Lemma 2.7, in order to find commutative solutions of $X^n + (-X)^n = Y^n + (-Y)^n$ for all positive integer n, it suffices to solve for matrices A and B such that $AB = BA = \underline{0}$, and this leads us to our first main result.

Theorem 2.8. Suppose X and Y are nonzero elements in $M_2(\mathbb{Q})$. Then $\{X, -X\} =_2 \{Y, -Y\}$ if and only if X, Y belong to one of the following two classes.

- 1. $XY \neq YX$, $X^2 = Y^2$, $X = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$ and $Y = \begin{pmatrix} w & x \\ y & -w \end{pmatrix}$ where a, b, c, w, x, y are rationals such that $a^2 + bc = w^2 + xy$ and $(bx \neq cx \text{ or } ax \neq bw \text{ or } ay \neq cw)$.
- 2. XY = YX, $X^2 = Y^2$, and there exist nonzero matrices $A, B \in M_2(\mathbb{Q})$ such that

$$AB = BA = \underline{0}, X = \frac{A+B}{2}$$
 and $Y = \frac{A-B}{2}$.

where A and B are of the following forms:

(a) $A = \begin{pmatrix} a & ma \\ c & mc \end{pmatrix}$ and $B = \begin{pmatrix} w & x \\ -\frac{w}{m} & -\frac{x}{m} \end{pmatrix}$ where $acmw \neq 0$ and aw + xc = 0,(b) $A = \begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix}$ and $B = \begin{pmatrix} w & 0 \\ -\frac{cw}{d} & 0 \end{pmatrix}$ where $cdw \neq 0,$ (c) $A = \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix}$ and $B = \begin{pmatrix} w & -\frac{bw}{d} \\ 0 & 0 \end{pmatrix}$ where $bdw \neq 0,$ (d) $A = \begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}$ and $B = \begin{pmatrix} w & 0 \\ 0 & 0 \end{pmatrix}$ where $dw \neq 0,$ (e) $A = \begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ y & 0 \end{pmatrix}$ where $cy \neq 0,$ (f) $A = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}$ where $bx \neq 0.$

Proof. Suppose $X^2 = Y^2$.

Case 1: $XY \neq YX$. Then by Theorem 2.6, $\operatorname{tr}(X) = \operatorname{tr}(Y) = 0$ and $\det X + \det iY = 0$. Let $X = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}, Y = \begin{pmatrix} w & x \\ y & -w \end{pmatrix}$ where $a, b, c, w, x, y \in \mathbb{Q}$. Since $\det X + \det iY = 0$, $\det X = \det Y$. This implies that $a^2 + bc = w^2 + xy$ as desired. Now note that $XY = \begin{pmatrix} aw + by & ax - bw \\ cw - ay & cx + aw \end{pmatrix}$ and $YX = \begin{pmatrix} aw + cx & bw - ax \\ ay - cw & by + aw \end{pmatrix}$. Thus we have $by \neq cx$ or $ax \neq bw$ or $ay \neq cw$.

0

Case 2: XY = YX. By Lemma 2.7, there exist $A, B \in M_2(\mathbb{Q})$ such that $AB = BA = \underline{0}$. Suppose $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $B = \begin{pmatrix} w & x \\ y & z \end{pmatrix}$. Thus we have the following system of equations:

$$(2.1) \qquad \qquad aw + by = aw + cx = 0$$

$$(2.2) \qquad \qquad ax + bz = bw + xd =$$

$$(2.3) \qquad \qquad cw + dy = ay + cz = 0$$

 $(2.4) \qquad \qquad cx + dz = by + dz = 0$

Since AB = 0, this implies that det A = 0 or det B = 0. We may assume that det A = 0. Thus ad - bc = 0.

Case 2.1: $abcd \neq 0$. Since ad - bc = 0, a/b = c/d. Let m = b/a. By (2.1), y = -w/m. By (2.2), z = -x/m. Thus $A = \begin{pmatrix} a & ma \\ c & mc \end{pmatrix}$ and $B = \begin{pmatrix} w & x \\ -\frac{w}{m} & -\frac{x}{m} \end{pmatrix}$ as desired.

Case 2.2: ad = bc = 0. Thus there are 4 cases to consider. Case 2.2.1: a = b = 0. Then (2.1)-(2.4) imply that

$$cx = xd = cw + dy = cz = cx + dz = dz = 0.$$

Since at least one of c and d is nonzero, we have x = z = 0. If $cd \neq 0$ then cw + dy = 0. Then y = -cw/d. Thus we obtain solutions of the form $A = \begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix}$ and $B = \begin{pmatrix} w & 0 \\ -\frac{cw}{d} & d \end{pmatrix}$ where $cdw \neq 0$. Case 2.2.1(i): c = 0. Then y = 0. The fact that A, B are nonzero matrices implies $dw \neq 0$. Thus we obtain solutions of the form $A = \begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}$ and $B = \begin{pmatrix} w & 0 \\ 0 & 0 \end{pmatrix}$ where $dw \neq 0$.

Case 2.2.1(ii): d = 0. Then w = 0. Again since A, B are nonzero matrices, we have $cy \neq 0$. So we obtain solutions of the form $A = \begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ y & 0 \end{pmatrix}$ where $cy \neq 0$.

Case 2.2.2: a = c = 0. Then (2.1)-(2.4) imply that

$$by = bz = bw + dx = dy = dz = by + dz = 0.$$

Since at least one of b and d is nonzero, we have y = z = 0. Case 2.2.2(i): $bd \neq 0$. Then bw + dx = 0 and x = -bw/d. Thus we obtain solutions of the form $A = \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix}$ and $B = \begin{pmatrix} w & -\frac{bw}{d} \\ 0 & 0 \end{pmatrix}$ where $bdw \neq 0$. Case 2.2.2(ii): b = 0. Then x = 0. The fact that A, B are nonzero matrices implies $dw \neq 0$. Thus we obtain solutions of the form $A = \begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}$ and $B = \begin{pmatrix} w & 0 \\ 0 & 0 \end{pmatrix}$ where $dw \neq 0$. Case 2.2.2(iii): d = 0. Then w = 0. Again since A and B are nonzero matrices, we have $bx \neq 0$. So we obtain solutions of the form $A = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}$ where $bx \neq 0$.

For the case b = d = 0 and c = d = 0, we proceed similarly and obtain solutions as shown in the previous cases. The converse is easily checked.

We next provide an example.

Example 2.9. Let $A = \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}$, $B = \begin{pmatrix} 4 & 4 \\ -2 & -2 \end{pmatrix}$. It is easy to see that $AB = BA = \underline{0}$. Next, we let X = (A + B)/2 and Y = (A - B)/2. Then

$$X = \begin{pmatrix} 5/2 & 3\\ -3/2 & -2 \end{pmatrix}, Y = \begin{pmatrix} -3/2 & -1\\ 1/2 & 0 \end{pmatrix}.$$

By Lemma 2.7, XY = YX and $X^2 = Y^2$. Thus $\{X, -X\} =_n \{Y, -Y\}$ for any positive integer *n*. Moreover, since *X* and *Y* are nonsingular matrices, $\{X, -X\} =_n \{Y, -Y\}$ for all integer *n*.

We proceed now to our final task which is to solve

$$\alpha_1 X_1^n + \alpha_2 X_2^n = \alpha_1 Y_1^n + \alpha_2 Y_2^n$$

for n = 1 and 2 over $M_2(\mathbb{Q})$. We need two more auxiliary results.

Lemma 2.10. Let m be a positive integer. Let A_1, A_2, B_1, B_2 be matrices in $M_m(\mathbb{Q})$. Let α_1 and α_2 be nonzero rational numbers such that $\alpha_1 + \alpha_2 \neq 0$. If

$$\alpha_1 A_1^n + \alpha_2 A_2^n = \alpha_1 B_1^n + \alpha_2 B_2^n$$

for n = 1, 2 then there exist A'_i and B'_i in $M_m(\mathbb{Q})$ such that

$$\alpha_1 A_1' + \alpha_2 A_2' = \underline{0} = \alpha_1 B_1' + \alpha_2 B_2' \quad and \quad \alpha_1 A_1'^2 + \alpha_2 A_2'^2 = \alpha_1 B_1'^2 + \alpha_2 B_2'^2.$$

Proof. Suppose $\alpha_1 A_1^n + \alpha_2 A_2^n = \alpha_1 B_1^n + \alpha_2 B_2^n$ for n = 1, 2 and $\alpha_1 \alpha_2 (\alpha_1 + \alpha_2) \neq 0$. For i = 1, 2, we define

$$S = \alpha_1 A_1 + \alpha_2 A_2, A'_i = A_i - \frac{S}{\alpha_1 + \alpha_2}, B'_i = B_i - \frac{S}{\alpha_1 + \alpha_2}$$

Then $\alpha_1 A'_1 + \alpha_2 A'_2 = \alpha_1 B'_1 + \alpha_2 B'_2 = 0$. Since $\alpha_1 A_1^n + \alpha_2 A_2^n = \alpha_1 B_1^n + \alpha_2 B_2^n$ for n = 1, 2, by Lemma 2.1, we have $\alpha_1 A_1'^2 + \alpha_2 A_2'^2 = \alpha_1 B_1'^2 + \alpha_2 B_2'^2$.

Lemma 2.11. Let m be a positive integer. Let α_1 and α_2 be nonzero rational numbers such that $\alpha_1 + \alpha_2 \neq 0$. There exist $A_1, A_2, B_1, B_2 \in M_m(\mathbb{Q})$ such that

 $\alpha_1 A_1 + \alpha_2 A_2 = \alpha_1 B_1 + \alpha_2 B_2 = \underline{0} \text{ and } \alpha_1 A_1^2 + \alpha_2 A_2^2 = \alpha_1 B_1^2 + \alpha_2 B_2^2 \text{ if and only if } A_1^2 = B_1^2.$

Proof. Suppose $\alpha_1 A_1 + \alpha_2 A_2 = \alpha_1 B_1 + \alpha_2 B_2 = \underline{0}$, $A_2 = (-\alpha_1 A_1)/\alpha_2$ and $B_2 = (-\alpha_1 B_1)/\alpha_2$. Then

$$\left(\alpha_1 + \alpha_1^2 / \alpha_2\right) A_1^2 = \alpha_1 A_1^2 + \alpha_2 A_2^2 = \alpha_1 B_1^2 + \alpha_2 B_2^2 = \left(\alpha_1 + \alpha_1^2 / \alpha_2\right) B_1^2.$$

Thus $A_1^2 = B_1^2$.

For the converse, suppose $A_2 = (-\alpha_1 A_1)/\alpha_2$ and $B_2 = (-\alpha_1 B_1)/\alpha_2$. Then

$$\alpha_2 A_2 + \alpha_1 A_1 = \alpha_1 B_1 + \alpha_2 B_2 = \underline{0}.$$

Since $A_1^2 = B_1^2$, we obtain that

$$\alpha_1 A_1^2 + \alpha_2 A_2^2 = \alpha_1 B_1^2 + \alpha_2 B_2^2.$$

Combining the results of Lemmas 2.10 and 2.11, we arrive at our final main result.

Theorem 2.12. Let α_1 and α_2 be nonzero rational numbers such that $\alpha_1 + \alpha_2 \neq 0$. Then all solutions of the diophantine equation

$$\alpha_1 X_1^n + \alpha_2 X_2^n = \alpha_1 Y_1^n + \alpha_2 Y_2^n$$

for n = 1 and 2 over $M_2(\mathbb{Q})$ are the form $X_1 = A_1 + C$, $X_2 = (-\alpha_1 A_1)/\alpha_2 + C$, $Y_1 = B_1 + C$, $Y_2 = (-\alpha_1 B_1)/\alpha_2 + C$ where $A_1^2 = B_1^2$ and $C \in M_2(\mathbb{Q})$.

We end this paper with an example.

Example 2.13. We show how to solve the following system of equations

$$2X_1^n + 3X_2^n = 2Y_1^n + 3Y_2^n \qquad (1 \le n \le 2)$$

over $M_2(\mathbb{Q})$.

By Lemma 2.10, we can restrict our attention to find solutions A_1, A_2, B_1, B_2 in $M_2(\mathbb{Q})$ such that

$$2A_1 + 3A_2 = 2B_1 + 3B_2 = 0$$
 and $2A_1^2 + 3A_2^2 = 2B_1^2 + 3B_2^2$

By Theorem 2.8, it suffices to find $A_1, B_1 \in M_2(\mathbb{Q})$ such that $A_1^2 = B_1^2$. We work out some solutions for two different cases. Case 1: $A_1B_1 = B_1A_1$. Let $A_1 = \begin{pmatrix} 5/2 & 3 \\ -3/2 & -2 \end{pmatrix}$ and $B_1 = \begin{pmatrix} -3/2 & -1 \\ 1/2 & 0 \end{pmatrix}$. Then we have $A_2 = \frac{-2}{3}A_1 = \begin{pmatrix} -5/3 & -2 \\ 1 & 4/3 \end{pmatrix}$ and $B_2 = \frac{-2}{3}B_1\begin{pmatrix} 1 & 2/3 \\ -1/3 & 0 \end{pmatrix}$. On the Tarry-Escott and related problems for $2{\times}2$ matrices over ${\mathbb Q}$

Case 2:
$$A_1B_1 \neq B_1A_1$$
. Let $A_1 = \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix}$ and $B_1 = \begin{pmatrix} 3 & 1 \\ -9 & -3 \end{pmatrix}$. Then
 $A_2 = \frac{-2}{3}A_1 = \begin{pmatrix} -4/3 & -2/3 \\ 8/3 & 4/3 \end{pmatrix}$ and $B_2 = \frac{-2}{3}B_1 = \begin{pmatrix} -2 & -2/3 \\ 6 & 2 \end{pmatrix}$.

Therefore,

$$2(A_1 + C)^n + 3(A_2 + C)^n = 2(B_1 + C)^n + 3(B_2 + C)^n$$

for n = 1, 2 where $C \in M_2(\mathbb{Q})$.

Acknowledgements. We would like to express our gratitude to the referee(s) for comments and suggestions.

References

- A. Alpers and R. Tijdeman, The two-dimensional Prouhet-Tarry-Escott problem, J. Number Theory, 123(2)(2007), 403–412.
- [2] P. Borwein and C. Ingalls, The Prouhet-Tarry-Escott problem revisited, Enseign. Math., 40(2)(1994), 3–27.
- [3] A. Choudhry, Matrix analogues of the Tarry-Escott problem, multigrade chains and the equation of Fermat, Math. Student, **75**(2006), 215–224.
- [4] B. Cohen, Generalized Pell Equation for 2 × 2 matrices, Discuss. Math. GAA, 37(2017), 13–30.
- [5] H. L. Dorwart and O. E. Brown, The Tarry-Escott Problem, Amer. Math. Monthly, 44(10)(1937), 613–626.
- [6] L. N. Vaserstein, Noncommutative number theory, in Algebraic K-theory and Algebraic Number Theory, Contemp. Math. 83, Amer. Math. Soc., (1989), 445–449.