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Abstract. Reduced solutions of size 2 and degree n of the Tarry-Escott problem over

M2(Q) are determined. As an application, the diophantine equation αAn + βBn =

αCn + βDn, where α, β are rational numbers satisfying α + β ̸= 0 and n ∈ {1, 2}, is

completely solved for A,B,C,D ∈ M2(Q).

1. Introduction

A Diophantine equation is an equation, usually with integral or rational coef-
ficients, in which the sought-after unknowns are also integers. In 1989, Vaserstein
[6] suggested solving classical problems of number theory substituting the ring Z
by the ring M2(Z) of 2 × 2 integral matrices. Some problems become easier and
some give us interesting results. The Tarry-Escott problem is a classical problem in
number theory which asks one to find two distinct multisets of integers {a1, . . . , an}
and {b1, . . . , bn} such that

n∑
i=1

aji =

n∑
i=1

bji

for j = 1, 2, . . . , k. We call n the size of the solution and k the degree. We abbreviate
the above system by writing

{a1, . . . , an} =k {b1, . . . , bn}.
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Solutions with k = n− 1 are called ideal solutions. The Tarry-Escott problem has
been extensively investigated in the literature; see for instance [1], [2] and also [5].

In 2006, Choudhry [3] introduced a matrix analog of the Tarry-Escott problem
by considering the problem over M2(Z). The Tarry–Escott problem over Mm(R)
for a given ring R can be stated as follows: given k,m, n ∈ N and a ring R, two
different multisets

A = {A1, A2, . . . , An} and B = {B1, B2, . . . , Bn},

where Ai, Bi ∈ Mm(R) \ {0}, constitute a non-trivial solution of the Tarry–Escott
problem of size n and degree k over Mm(R) if

n∑
i=1

Aj
i =

n∑
i=1

Bj
i (j = 1, 2, . . . , k),

abbreviated as {A1, . . . , An} =k {B1, . . . , Bn}. Choudhry [3] obtained, in para-
metric terms, two distinct pairs of matrices A1, A2 and B1, B2 in M2(Z) such that
An

1 + An
2 = Bn

1 + Bn
2 holds simultaneously for all integral values of n, whether

positive or negative. This gives a non-trivial solution of the matrix analog of the
Tarry-Escott problem of infinite degree and size 2. Using this solution, he obtained
an arbitrarily long multigrade chain of matrices in M2(Z) such that

An
11 +An

12 = An
21 +An

22 = · · · = An
m1 +An

m2,

which also holds simultaneously for all integral values of n, whether positive or
negative. Further, he obtained a parametric solution over M2(Z) of the equation

An
1 +An

2 +An
3 = Bn

1 +Bn
2 +Bn

3 ,

for all integral values of n. This solution leads to another arbitrarily long multigrade
chain of matrices in M2(Z).

In the present work, we present a different approach to obtain solutions of the
Tarry-Escott problem over M2(Z); our approach also provides additional solutions
different from those of Choudhry. As an application of our main result, general
solutions, over M2(Q), are determined for the diophantine equation

αAn + βBn = αCn + βDn,

where α, β ∈ Q with α+ β ̸= 0 and n ∈ {1, 2}.
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2. Main Results

First, we prove an auxiliary result which will be used later.

Lemma 2.1. Let m and n be positive integers, let Ai, Bi ∈ Mm(Q) (i = 1, . . . , n),
and let αi ∈ Q . If

n∑
i=1

αiAi =

n∑
i=1

αiBi and

n∑
i=1

αiA
2
i =

n∑
i=1

αiB
2
i ,

then

n∑
i=1

αi(Ai + C) =

n∑
i=1

αi(Bi + C) and

n∑
i=1

αi(Ai + C)2 =

n∑
i=1

αi(Bi + C)2

for any C ∈ Mm(Q).

Proof. Since
∑n

i=1 αiAi =
∑n

i=1 αiBi and
∑n

i=1 αiA
2
i =

∑n
i=1 αiB

2
i , it is easy to

see that
n∑

i=1

αi(Ai + C) =

n∑
i=1

αi(Bi + C)

and

n∑
i=1

αi(Ai + C)2 =

n∑
i=1

αiA
2
i + (

n∑
i=1

αiAi)C + C(

n∑
i=1

αiAi) +

n∑
i=1

αiC
2

=

n∑
i=1

αiB
2
i + (

n∑
i=1

αiBi)C + C(

n∑
i=1

αiBi) +

n∑
i=1

αiC
2

=

n∑
i=1

αi(Bi + C)2. □

Immediate from Lemma 2.1 is

Corollary 2.2. Let m and n be positive integers and let

A = {A1, A2, . . . , An} and B = {B1, B2, . . . , Bn}

be subsets of Mm(Q). If A =2 B, then for any matrix C ∈ Mm(Q) we have

A+ C =2 B + C

where

A+ C = {A1 + C,A2 + C, . . . , An + C}, B + C = {B1 + C,B2 + C, . . . , Bn + C}.

We next define equivalent solutions.
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Definition 2.3. Let k,m and n be positive integers. Let

A = {A1, . . . , An}, B = {B1, . . . , Bn}, X = {X1, . . . , Xn}, Y = {Y1, . . . , Yn}

be subsets of Mm(Q). We say that A =k B and X =k Y are equivalent if there
exist M and N in Mm(Q) such that for all i,

Xi = MAi +N and Yi = MBi +N.

Definition 2.4. Let k,m and n be positive integers. Let A = {A1, . . . , An}, B =
{B1, . . . , Bn} be subsets of Mm(Q). Then a solution A =k B is called a reduced
solution if

n∑
i=1

Ai =

n∑
i=1

Bi = 0.

The concept of being reduced is useful because of the next result.

Theorem 2.5. Let m and n be positive integers. Every solution of size n and degree
2 of the Tarry-Escott Problem over Mm(Q) is equivalent to a reduced solution.

Proof. Let A = {A1, . . . , An} and B = {B1, . . . , Bn} be two subsets of Mm(Q) such
that A =2 B. Now let X = {X1, X2, . . . , Xn} and Y = {Y1, Y2, . . . , Yn}, where
Xi = Ai − S, Yi = Bi − S for i = 1, . . . , n and S = (A1 + · · ·+An)/n. It is easy to
see that

n∑
i=1

Xi =

n∑
i=1

Yi = 0.

Thus X =2 Y is a reduced solution. Since A =2 B and X =2 Y , by Lemma 2.1,
A =2 B is equivalent to a reduced solution X =2 Y . □

We now consider the so-called symmetric solutions of the Tarry-Escott Problem
over M2(Q); these are integral matrices X and Y satisfying

Xn + (−X)n = Y n + (−Y )n,

for all positive integers n. It suffices to show that X2 = Y 2. We first recall a result
from [4].

Theorem 2.6. Let c ∈ C. Suppose that X and Y are two elements in M2(C)
such that XY ̸= Y X. If X2 + Y 2 = cI where I is the identity matrix, then
tr(X) = tr(Y ) = 0 and detX + detY = −c.

We prove now another auxiliary result.

Lemma 2.7. Suppose X and Y are nonzero elements in M2(Q) and X ̸= Y . Then
X2 = Y 2 and XY = Y X if and only if there exist nonzero matrices A,B ∈
M2(Q) such that

AB = BA = 0, X =
A+B

2
and Y =

A−B

2
.
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Proof. Suppose X2 = Y 2 and XY = Y X. Next, we let A = X+Y and B = X−Y .
Then the results follows easily. For the converse, we suppose that X = (A+B)/2
and Y = (A−B)/2 where AB = BA = 0. Then it is easy to see that XY = Y X
and X2 = Y 2. Hence the converse holds as desired. □

From Lemma 2.7, in order to find commutative solutions of Xn + (−X)n =
Y n +(−Y )n for all positive integer n, it suffices to solve for matrices A and B such
that AB = BA = 0, and this leads us to our first main result.

Theorem 2.8. Suppose X and Y are nonzero elements in M2(Q). Then
{X,−X} =2 {Y,−Y } if and only if X,Y belong to one of the following two classes.

1. XY ̸= Y X, X2 = Y 2, X =

(
a b
c −a

)
and Y =

(
w x
y −w

)
where

a, b, c, w, x, y are rationals such that a2 + bc = w2 + xy and (bx ̸= cx or
ax ̸= bw or ay ̸= cw).

2. XY = Y X, X2 = Y 2, and there exist nonzero matrices A,B ∈ M2(Q) such
that

AB = BA = 0, X =
A+B

2
and Y =

A−B

2
.

where A and B are of the following forms:

(a) A =

(
a ma
c mc

)
and B =

(
w x
− w

m − x
m

)
where acmw ̸= 0 and aw+xc =

0,

(b) A =

(
0 0
c d

)
and B =

(
w 0

− cw
d 0

)
where cdw ̸= 0,

(c) A =

(
0 b
0 d

)
and B =

(
w − bw

d
0 0

)
where bdw ̸= 0,

(d) A =

(
0 0
0 d

)
and B =

(
w 0
0 0

)
where dw ̸= 0,

(e) A =

(
0 0
c 0

)
and B =

(
0 0
y 0

)
where cy ̸= 0,

(f) A =

(
0 b
0 0

)
and B =

(
0 x
0 0

)
where bx ̸= 0.

Proof. Suppose X2 = Y 2.
Case 1: XY ̸= Y X. Then by Theorem 2.6, tr(X) = tr(Y ) = 0 and detX +

det iY = 0. Let X =

(
a b
c −a

)
, Y =

(
w x
y −w

)
where a, b, c, w, x, y ∈ Q. Since

detX +det iY = 0, detX = detY . This implies that a2 + bc = w2 + xy as desired.

Now note that XY =

(
aw + by ax− bw
cw − ay cx+ aw

)
and Y X =

(
aw + cx bw − ax
ay − cw by + aw

)
.

Thus we have by ̸= cx or ax ̸= bw or ay ̸= cw.
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Case 2: XY = Y X. By Lemma 2.7, there exist A,B ∈ M2(Q) such that AB =

BA = 0. Suppose A =

(
a b
c d

)
and B =

(
w x
y z

)
. Thus we have the following

system of equations:

aw + by = aw + cx = 0(2.1)

ax+ bz = bw + xd = 0(2.2)

cw + dy = ay + cz = 0(2.3)

cx+ dz = by + dz = 0(2.4)

Since AB = 0, this implies that detA = 0 or detB = 0. We may assume that
detA = 0. Thus ad− bc = 0.
Case 2.1: abcd ̸= 0. Since ad − bc = 0, a/b = c/d. Let m = b/a. By (2.1),

y = −w/m. By (2.2), z = −x/m. Thus A =

(
a ma
c mc

)
and B =

(
w x
− w

m − x
m

)
as

desired.
Case 2.2: ad = bc = 0. Thus there are 4 cases to consider.
Case 2.2.1: a = b = 0. Then (2.1)-(2.4) imply that

cx = xd = cw + dy = cz = cx+ dz = dz = 0.

Since at least one of c and d is nonzero, we have x = z = 0. If cd ̸= 0 then

cw+ dy = 0. Then y = −cw/d. Thus we obtain solutions of the form A =

(
0 0
c 0

)
and B =

(
w 0

− cw
d d

)
where cdw ̸= 0.

Case 2.2.1(i): c = 0. Then y = 0. The fact that A,B are nonzero matrices implies

dw ̸= 0. Thus we obtain solutions of the form A =

(
0 0
0 d

)
and B =

(
w 0
0 0

)
where dw ̸= 0.
Case 2.2.1(ii): d = 0. Then w = 0. Again since A,B are nonzero matrices, we have

cy ̸= 0. So we obtain solutions of the form A =

(
0 0
c 0

)
and B =

(
0 0
y 0

)
where

cy ̸= 0.
Case 2.2.2: a = c = 0. Then (2.1)-(2.4) imply that

by = bz = bw + dx = dy = dz = by + dz = 0.

Since at least one of b and d is nonzero, we have y = z = 0.
Case 2.2.2(i): bd ̸= 0. Then bw+dx = 0 and x = −bw/d. Thus we obtain solutions

of the form A =

(
0 b
0 d

)
and B =

(
w − bw

d
0 0

)
where bdw ̸= 0.

Case 2.2.2(ii): b = 0. Then x = 0. The fact that A,B are nonzero matrices implies

dw ̸= 0. Thus we obtain solutions of the form A =

(
0 0
0 d

)
and B =

(
w 0
0 0

)
where dw ̸= 0.



On the Tarry-Escott and related problems for 2×2matrices over Q 351

Case 2.2.2(iii): d = 0. Then w = 0. Again since A and B are nonzero matrices,

we have bx ̸= 0. So we obtain solutions of the form A =

(
0 b
0 0

)
and B =

(
0 x
0 0

)
where bx ̸= 0.

For the case b = d = 0 and c = d = 0, we proceed similarly and obtain solutions
as shown in the previous cases. The converse is easily checked. □

We next provide an example.

Example 2.9. Let A =

(
1 2
−1 −2

)
, B =

(
4 4
−2 −2

)
. It is easy to see that

AB = BA = 0. Next, we let X = (A+B)/2 and Y = (A−B)/2. Then

X =

(
5/2 3
−3/2 −2

)
, Y =

(
−3/2 −1
1/2 0

)
.

By Lemma 2.7, XY = Y X and X2 = Y 2. Thus {X,−X} =n {Y,−Y } for
any positive integer n. Moreover, since X and Y are nonsingular matrices,
{X,−X} =n {Y,−Y } for all integer n.

We proceed now to our final task which is to solve

α1X
n
1 + α2X

n
2 = α1Y

n
1 + α2Y

n
2

for n = 1 and 2 over M2(Q). We need two more auxiliary results.

Lemma 2.10. Let m be a positve integer. Let A1, A2, B1, B2 be matrices in Mm(Q).
Let α1 and α2 be nonzero rational numbers such that α1 + α2 ̸= 0. If

α1A
n
1 + α2A

n
2 = α1B

n
1 + α2B

n
2

for n = 1, 2 then there exist A′
i and B′

i in Mm(Q) such that

α1A
′
1 + α2A

′
2 = 0 = α1B

′
1 + α2B

′
2 and α1A

′2
1 + α2A

′2
2 = α1B

′2
1 + α2B

′2
2 .

Proof. Suppose α1A
n
1 +α2A

n
2 = α1B

n
1 +α2B

n
2 for n = 1, 2 and α1α2(α1 +α2) ̸= 0.

For i = 1, 2, we define

S = α1A1 + α2A2, A
′
i = Ai −

S

α1 + α2
, B′

i = Bi −
S

α1 + α2
.

Then α1A
′
1 + α2A

′
2 = α1B

′
1 + α2B

′
2 = 0. Since α1A

n
1 + α2A

n
2 = α1B

n
1 + α2B

n
2 for

n = 1, 2, by Lemma 2.1, we have α1A
′2
1 + α2A

′2
2 = α1B

′2
1 + α2B

′2
2 . □

Lemma 2.11. Let m be a positive integer. Let α1 and α2 be nonzero rational
numbers such that α1 + α2 ̸= 0. There exist A1, A2, B1, B2 ∈ Mm(Q) such that
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α1A1 + α2A2 = α1B1 + α2B2 = 0 and α1A
2
1 + α2A

2
2 = α1B

2
1 + α2B

2
2 if and only if

A2
1 = B2

1 .

Proof. Suppose α1A1 + α2A2 = α1B1 + α2B2 = 0, A2 = (−α1A1)/α2 and B2 =
(−α1B1)/α2. Then(

α1 + α2
1/α2

)
A2

1 = α1A
2
1 + α2A

2
2 = α1B

2
1 + α2B

2
2 =

(
α1 + α2

1/α2

)
B2

1 .

Thus A2
1 = B2

1 .
For the converse, suppose A2 = (−α1A1)/α2 and B2 = (−α1B1)/α2. Then

α2A2 + α1A1 = α1B1 + α2B2 = 0.

Since A2
1 = B2

1 , we obtain that

α1A
2
1 + α2A

2
2 = α1B

2
1 + α2B

2
2 .

□

Combining the results of Lemmas 2.10 and 2.11, we arrive at our final main
result.

Theorem 2.12. Let α1 and α2 be nonzero rational numbers such that α1+α2 ̸= 0.
Then all solutions of the diophantine equation

α1X
n
1 + α2X

n
2 = α1Y

n
1 + α2Y

n
2

for n = 1 and 2 over M2(Q) are the form X1 = A1 + C, X2 = (−α1A1)/α2 + C,
Y1 = B1 + C, Y2 = (−α1B1)/α2 + C where A2

1 = B2
1 and C ∈ M2(Q).

We end this paper with an example.

Example 2.13. We show how to solve the following system of equations

2Xn
1 + 3Xn

2 = 2Y n
1 + 3Y n

2 (1 ≤ n ≤ 2)

over M2(Q).
By Lemma 2.10, we can restrict our attention to find solutions A1, A2, B1, B2

in M2(Q) such that

2A1 + 3A2 = 2B1 + 3B2 = 0 and 2A2
1 + 3A2

2 = 2B2
1 + 3B2

2 .

By Theorem 2.8, it suffices to find A1, B1 ∈ M2(Q) such that A2
1 = B2

1 . We work
out some solutions for two different cases.

Case 1: A1B1 = B1A1. Let A1 =

(
5/2 3
−3/2 −2

)
and B1 =

(
−3/2 −1
1/2 0

)
. Then we

have

A2 =
−2

3
A1 =

(
−5/3 −2
1 4/3

)
and B2 =

−2

3
B1

(
1 2/3

−1/3 0

)
.
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Case 2: A1B1 ̸= B1A1. Let A1 =

(
2 1
−4 −2

)
and B1 =

(
3 1
−9 −3

)
. Then

A2 =
−2

3
A1 =

(
−4/3 −2/3
8/3 4/3

)
and B2 =

−2

3
B1 =

(
−2 −2/3
6 2

)
.

Therefore,

2(A1 + C)n + 3(A2 + C)n = 2(B1 + C)n + 3(B2 + C)n

for n = 1, 2 where C ∈ M2(Q).
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