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ABSTRACT. Reduced solutions of size 2 and degree n of the Tarry-Escott problem over
M>(Q) are determined. As an application, the diophantine equation «A™ + SB" =
aC™ + BD™, where a, 8 are rational numbers satisfying a + 8 # 0 and n € {1,2}, is
completely solved for A, B,C, D € M>(Q).

1. Introduction

A Diophantine equation is an equation, usually with integral or rational coef-
ficients, in which the sought-after unknowns are also integers. In 1989, Vaserstein
[6] suggested solving classical problems of number theory substituting the ring Z
by the ring M5(Z) of 2 x 2 integral matrices. Some problems become easier and
some give us interesting results. The Tarry-Escott problem is a classical problem in
number theory which asks one to find two distinct multisets of integers {ay,...,an}

and {b1,...,b,} such that
=3
i=1 i=1

for j =1,2,..., k. We call n the size of the solution and k the degree. We abbreviate
the above system by writing

{ala"~7an} =Lk {bl,...,bn}.
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Solutions with k£ = n — 1 are called ideal solutions. The Tarry-Escott problem has
been extensively investigated in the literature; see for instance [1], [2] and also [5].

In 2006, Choudhry [3] introduced a matrix analog of the Tarry-Escott problem
by considering the problem over M3(Z). The Tarry—Escott problem over M,,(R)
for a given ring R can be stated as follows: given k,m,n € N and a ring R, two
different multisets

A:{Al,AQ,...,An} and B:{Bl,BQ,...,Bn},

where A;, B; € M,,,(R) \ {0}, constitute a non-trivial solution of the Tarry—Escott
problem of size n and degree k over M,,(R) if

ZH:Afzzn:Bﬁ (G=1,2,....k),
=1 i=1

abbreviated as {41,...,4,} =¢ {B1,...,Br}. Choudhry [3] obtained, in para-
metric terms, two distinct pairs of matrices Ay, Ay and By, Bs in M3(Z) such that
At + Ay = B} + BZ holds simultaneously for all integral values of n, whether
positive or negative. This gives a non-trivial solution of the matrix analog of the
Tarry-Escott problem of infinite degree and size 2. Using this solution, he obtained
an arbitrarily long multigrade chain of matrices in My(Z) such that

Ay + Ay = A5 + Agy = - = AL + AL,
which also holds simultaneously for all integral values of n, whether positive or
negative. Further, he obtained a parametric solution over Ms(Z) of the equation

AT + AT + AT = B + BY + BT,

for all integral values of n. This solution leads to another arbitrarily long multigrade
chain of matrices in Ms(Z).

In the present work, we present a different approach to obtain solutions of the
Tarry-Escott problem over Ms(Z); our approach also provides additional solutions
different from those of Choudhry. As an application of our main result, general
solutions, over My(Q), are determined for the diophantine equation

aA" + SB™ = aC™ + BD",

where o, 8 € Q with a+ 8 # 0 and n € {1, 2}.
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2. Main Results

First, we prove an auxiliary result which will be used later.

Lemma 2.1. Let m and n be positive integers, let A;, B; € M,,(Q) (i=1,...,n),

and let a; € Q . If

n n n n
E Oz,A7 = E OélB, and E 041/112 = E OziB2
=1 i=1 i=1 =1

then

zn:ai(Ai—l—C):zn:ai(Bi—i—C) and ZaZA—i-C

i=1

for any C € M,,,(Q).

Zaz

Proof. Since Y1 a;A; = i ;B and Y oy A2 = 371 ;B2 it is easy to

see that . .
Z%‘(Ai +C) = Zai(Bi +0C)
i=1 i=1

and
Zaz (A; +C)? Z:cuA2 (i a; A;)C + C(i a;
:ZaiBg Zaz )C+C Zal
i=1
= zn:ai(Bi + )% O

Immediate from Lemma 2.1 is

Corollary 2.2. Let m and n be positive integers and let

AZ{A17A2,...7ATL} and BZ{Bl,B27...

Al) + i OéiCQ
i=1

+ En: CkiC2
=1

,Bn}

be subsets of M, (Q). If A =5 B, then for any matriz C' € M,,(Q) we have

A+C=,B+C

where

A+C={A1+C,A+C,..., A, +C},B+C={B1+C,By+C,...,B,+C}.

We next define equivalent solutions.
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Definition 2.3. Let k,m and n be positive integers. Let
A={A,..., A}, B={By,....B,}, X ={X;,..., X,,},Y ={1,...,Y,,}

be subsets of M,,(Q). We say that A =, B and X =, Y are equivalent if there
exist M and N in M,,(Q) such that for all i,

X, =MA;+N and Y,=MB,;+N.

Definition 2.4. Let k,m and n be positive integers. Let A = {4;,...,4,},B =
{Bi,...,Bn} be subsets of M,,(Q). Then a solution A = B is called a reduced

solution if . .
> 4= Bi=0
i=1 i=1

The concept of being reduced is useful because of the next result.

Theorem 2.5. Let m and n be positive integers. Every solution of size n and degree
2 of the Tarry-Escott Problem over M,,(Q) is equivalent to a reduced solution.

Proof. Let A={A;,...,A,} and B=1{Bj,...,B,} be two subsets of M,,(Q) such
that A =3 B. Now let X = {X1,Xs,...,X,} and Y = {¥1,Y5,...,Y,}, where
Xi=A,-5,Y,=B;—Sfori=1,....,nand S = (A +--- + A,)/n. It is easy to

see that . .
Y Xi=) Yi=0
i=1 i=1

Thus X =5 Y is a reduced solution. Since A =5 B and X =5 Y, by Lemma 2.1,
A =5 B is equivalent to a reduced solution X =5 Y. O

We now consider the so-called symmetric solutions of the Tarry-Escott Problem
over M5(Q); these are integral matrices X and Y satisfying

for all positive integers n. It suffices to show that X2 = Y2, We first recall a result
from [4].

Theorem 2.6. Let ¢ € C. Suppose that X and Y are two elements in Ms(C)
such that XY # YX. If X2 +Y? = cI where I is the identity matriz, then
tr(X) =tr(Y) =0 and det X + detY = —c.

We prove now another auxiliary result.

Lemma 2.7. Suppose X andY are nonzero elements in M2(Q) and X #Y. Then
X2 =Y? and XY = YX if and only if there exist nonzero matrices A, B €
M5(Q) such that

A+ DB A-B

AB=BA=0,X = and Y = 3
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Proof. Suppose X2 =Y? and XY =Y X. Next, welet A=X+Y and B=X-Y.
Then the results follows easily. For the converse, we suppose that X = (A + B)/2
and Y = (A — B)/2 where AB = BA = 0. Then it is easy to see that XY =YX
and X2 = Y?2. Hence the converse holds as desired. O

From Lemma 2.7, in order to find commutative solutions of X™ + (=X)" =
Y+ (=Y)" for all positive integer n, it suffices to solve for matrices A and B such
that AB = BA = 0, and this leads us to our first main result.

Theorem 2.8. Suppose X and Y are nonzero elements in Mx(Q). Then
{X, =X} =2 {Y, =Y} if and only if X, Y belong to one of the following two classes.
1. XY #YX, X2 = Y2 X = (“ b) and Y = (w z) where
c —a Yy —w
a,b,c,w,z,y are rationals such that a®> + bc = w? + xy and (bx # cx or
ax # bw or ay # cw).

2. XY =YX, X?2=Y?2, and there exist nonzero matrices A, B € Ma(Q) such

that
A+ B A—-B

AB=BA=0,X = and Y = 5

where A and B are of the following forms:

(a) A= ((CZ za) and B = (ww xw) where acmw # 0 and aw + xc =

(f) A=

0, "
(b) A= <0 O) and B = ( ww ) where cdw # 0,
c d -
() A= (% " anaB= (Y 7 where bdw £ 0
) A=y 4) mdB={, 0 where bdw # 0,
0 0 w 0
(d)A—(O d) andB—(O O) where dw # 0,
(e) A= (O ) and B = (2 0) where cy # 0,

OO O

0
) and B = (O 0) where bx # 0.

Proof. Suppose X2 = Y?2.

Case 1I: XY # YX. Then by Theorem 2.6, tr(X) = tr(Y) = 0 and det X +

detiY = 0. Let X = <a b ) Y = (w ;v ) where a,b,c,w,xz,y € Q. Since
c —a Yy —w

det X +detiY =0, det X = det Y. This implies that a® + bc = w? + zy as desired.

Now note that XY = (aw +by aw = bw> and YX = (aw tez bw- a;v)'
cw—ay cr+aw ay —cw by + aw

Thus we have by # cx or ax # bw or ay # cw.
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Case 2: XY =Y X. By Lemma 2.7, there exist A, B € M5(Q) such that AB =
BA = 0. Suppose A = (CCL Z) and B = <Z) J;) Thus we have the following

system of equations:

(2.1) aw~+ by = aw + cx =0
(2.2) ar+bz=bw+ad=0
(2.3) cw+dy=ay+cz=0
(2.4) cx+dz=by+dz=0

Since AB = 0, this implies that det A = 0 or det B = 0. We may assume that
det A = 0. Thus ad — bc = 0.
Case 2.1: abed # 0. Since ad — be = 0, a/b = ¢/d. Let m = b/a. By (2.1),

y=—w/m. By (2.2), z = —z/m. Thus A = (CCL Zi) and B = (_ww _xx as

desired.
Case 2.2: ad = bc = 0. Thus there are 4 cases to consider.
Case 2.2.1: a =b=0. Then (2.1)-(2.4) imply that

cx=zd=cw+dy=cz=cr+dz=dz=0.
Since at least one of ¢ and d is nonzero, we have x = z = 0. If c¢d # 0 then

cw+dy =0. Then y = —cw/d. Thus we obtain solutions of the form A = (2 8)

and B = fjc)iw 2)

d
Case 2.2.1(i): ¢ =10. Then y = 0. The fact that A, B are nonzero matrices implies
dw # 0. Thus we obtain solutions of the form A = <0 0) and B = (w 0)

0 d 0 0
where dw # 0.
Case 2.2.1(ii): d = 0. Then w = 0. Again since A, B are nonzero matrices, we have

cy # 0. So we obtain solutions of the form A = (2 0) and B = <2 8) where

0
cy # 0.
Case 2.2.2: a = c¢=0. Then (2.1)-(2.4) imply that

where cdw # 0.

by=bz=bw+dr=dy=dz=by+dz=0.

Since at least one of b and d is nonzero, we have y = z = 0.
Case 2.2.2(i): bd # 0. Then bw+dx = 0 and = —bw/d. Thus we obtain solutions
0 b w -
= = d
of the form A <0 d) and B (0 0 ) where bdw # 0.
Case 2.2.2(ii): b= 0. Then z = 0. The fact that A, B are nonzero matrices implies
dw # 0. Thus we obtain solutions of the form A = <0 O> and B = (w O)

0 d 0 0
where dw # 0.
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Case 2.2.2(ii): d = 0. Then w = 0. Again since A and B are nonzero matrices,
we have bx # 0. So we obtain solutions of the form A = (O b) and B = (O x)

0 0 0 0
where bx # 0.
For the case b =d = 0 and ¢ = d = 0, we proceed similarly and obtain solutions
as shown in the previous cases. The converse is easily checked. O

We next provide an example.
Example 2.9. Let A = ! 2 B = 404 .
-1 =2/’ -2 =2
AB =BA =0. Next, welet X =(A+ B)/2 and Y = (A — B)/2. Then

(52 3 (=32 -1
X= (-3/2 —2>’Y_(1/2 0)'
By Lemma 2.7, XY = YX and X? = Y2 Thus {X,-X} =, {V,-Y} for

any positive integer n. Moreover, since X and Y are nonsingular matrices,
{X,—-X} =, {Y,-Y} for all integer n.

It is easy to see that

We proceed now to our final task which is to solve
OélX{l + QQX; = Oélyln + Ckg}/zn
for n =1 and 2 over M>(Q). We need two more auxiliary results.

Lemma 2.10. Let m be a positve integer. Let Ay, As, By, Ba be matrices in M, (Q).
Let a1 and g be monzero rational numbers such that ay + as # 0. If

OllA;L + OLQAS = OllB{l + QQBS
for n =1,2 then there exist A, and B] in M,,(Q) such that

a1 A} + Ay, =0= a1 B + asBy and oy AP + ax A} = a1 B? + ap BY.

Proof. Suppose a1 AT + ag Ay = a1 B + e BY for n = 1,2 and ayas(a + ag) # 0.
For i = 1,2, we define
S S

,B.=B; — ——.
ai + ao ai + ag

S =a14; + QQAQ’A; =A; -
Then a3 A} + as Al = a1 B + aa B} = 0. Since a1 AY + as A} = a1 By + s BY for
n = 1,2, by Lemma 2.1, we have ay A + ap A = a1 B2 + aa BY. O

Lemma 2.11. Let m be a positive integer. Let oy and as be monzero rational
numbers such that oy + s # 0. There exist Ay, As, By, Bs € M,,(Q) such that
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1Ay + Ay = a1 By + asBy = 0 and a1 A? + as A2 = a1 B? + o B2 if and only if
A? = B?.
Proof. Suppose a1 A1 + asAs = a1 By + asBs = 0, Ay = (—a141)/as and By =
(—a1B1)/as. Then
(oq + a?/ag)A% = 1A} + aA3 = a1 B} + ayB3 = (al + a%/ag)B%.
Thus A? = B?.
For the converse, suppose Ay = (—a3A1)/as and By = (—a1B1)/as. Then
Ay + 1A = a1 By + as By = 0.
Since A% = B%, we obtain that
OélA? + OégA% = Ole% + O(QBS.
a

Combining the results of Lemmas 2.10 and 2.11, we arrive at our final main
result.

Theorem 2.12. Let a; and as be nonzero rational numbers such that a; +ag # 0.
Then all solutions of the diophantine equation

Ole{L + OQX; = alYI” + OZQ}/Qn

forn =1 and 2 over M2(Q) are the form X, = A1 + C, Xo = (—a14;)/as + C,
Y1 = B1 +C, Yo = (—a1B1)/as + C where A3 = B} and C € M(Q).

We end this paper with an example.

Example 2.13. We show how to solve the following system of equations
2X7 +3X3 =2Y" +3Y5" (1<n<2)

over M (Q).
By Lemma 2.10, we can restrict our attention to find solutions A;, As, By, B
in M5(Q) such that

2A; +3A5 =2B; +3By =0 and 2A% +3A43=2B7 +3B;.

By Theorem 2.8, it suffices to find Ay, B; € M2(Q) such that A3 = B?. We work
out some solutions for two different cases.

Case 1: A1B; = B1A;. Let A; = (_5?{/22 _32) and By = (_1?;/22 —01) Then we

-2 [-5/3 -2 =2 1 2/3
A2—3A1—< 1 4/3> anng—BBl(_l/S O)

have
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Case 2: A1By # B1A;. Let A, = (24 12) and By = (39 13>. Then

-2 [—4/3 —2/3 =2 (=2 —2/3

Therefore,
204 +CO)* 4+ 3(As + C)* =2(B1 + C)" + 3(By + O)"

for n = 1,2 where C' € M>(Q).
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