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CHARACTERIZATIONS OF (JORDAN) DERIVATIONS ON

BANACH ALGEBRAS WITH LOCAL ACTIONS

Jiankui Li, Shan Li, and Kaijia Luo

Abstract. Let A be a unital Banach ∗-algebra and M be a unital ∗-A-

bimodule. If W is a left separating point of M, we show that every ∗-
derivable mapping at W is a Jordan derivation, and every ∗-left derivable
mapping at W is a Jordan left derivation under the condition WA =
AW . Moreover we give a complete description of linear mappings δ and

τ from A into M satisfying δ(A)B∗ +Aτ(B)∗ = 0 for any A,B ∈ A with

AB∗ = 0 or δ(A)◦B∗+A◦ τ(B)∗ = 0 for any A,B ∈ A with A◦B∗ = 0,
where A ◦B = AB +BA is the Jordan product.

1. Introduction

Let A be an algebra over a real or complex fieldK andM be an A-bimodule.
A linear mapping δ from A into M is called a derivable mapping at W if
δ(W ) = Aδ(B)+ δ(A)B for all A,B ∈ A with AB = W . As is well known, the
problem of linear mappings preserving fixed products is a very interesting item
in the field of operator algebra. Derivations that can be completely determined
by the local action on some subsets of algebra have attracted attention of many
researchers. Here, we only focus on derivable mappings at special points. There
are a considerable number of influential results on derivable mappings at zero,
unit, invertible elements, separating points, idempotent elements and so on. In
some results, a derivable mapping at zero is described in terms of a generalized
derivation. Jing, Lu and Li [17] described continuous derivable mappings at
zero on von Neumann algebras. It was studied in [25] for continuous derivable
mappings at zero from unital C∗-algebras into unital Banach bimodules. An
and Cai [2] discussed continuous derivable mappings at arbitrary but fixed
products on von Neumann algebras. In [22], Lu considered continuous derivable
mappings from a unital Banach algebra into its unital Banach bimodule at left
or right separating points. Furthermore, the first author of the paper and Zhou
[20] generalized this result without the assumption of continuity.
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There is also a related variation of derivable mappings on ∗-algebras. A
linear mapping δ from a ∗-algebra A into a ∗-A-bimodule M is a ∗-derivable
mapping at W if

A,B ∈ A, AB∗ = W =⇒ δ(W ) = Aδ(B)∗ + δ(A)B∗.(D∗
W )

∗-derivable mappings at zero were studied on unital ∗-algebras, von Neumann
algebras, C∗-algebras, and zero product determined ∗-algebras in [5, 12, 13].
Fadaee, Fallahi and Ghahramani [12] considered continuous ∗-derivable map-
pings at left separating points from a unital Banach ∗-algebra into its Banach
∗-bimodule. In [4], An, He and the first author of this paper proved that every
(continuous) ∗-derivable mapping from a (unital C∗-algebra) factor von Neu-
mann algebra into its Banach ∗-bimodule is a ∗-derivation if and only if W is a
left separating point. Recall that a derivation δ from A into M is a ∗-derivation
if δ(A∗) = δ(A)∗ for each A in A. Our first goal is to give a description of linear
(unnecessary continuous assumption) mappings satisfying D∗

W from a Banach
∗-algebra into its ∗-bimodule.

Some natural development of usual ∗-derivable mappings is ∗-left derivable
mappings. A linear mapping δ from a ∗-algebra A into a ∗-A-bimodule M is
a ∗-left derivable mapping at W , if

A,B ∈ A, AB∗ = W =⇒ δ(W ) = Aδ(B)∗ +B∗δ(A).(L∗
W )

In [4], the authors showed that every continuous ∗-left derivable mapping at
separating points from a unital C∗-algebra or a von Neumann algebra into
its unital Banach ∗-bimodule is identical with zero under certain conditions.
Our second aim is to give the representation of linear mappings satisfying the
property L∗

W .
Based on the above facts, there is a related problem: how to characterize

two linear mappings δ and τ from A into M satisfying δ(A)B + Aτ(B) = 0
for each A,B ∈ A with AB = 0. In [8], it was shown that if A is a unital zero
product determined algebra, then δ and τ are of the form

δ(A) = ∆(A) + δ(I)A, τ(A) = ∆(A) +Aτ(I)

for all A ∈ A, with ∆ being a derivation. In [7, 14], one can find a positive
answer to the question on standard operator algebras and nest algebras. The
first two authors of this paper [19] studied it from A into M with the property
P (see Section 4). Next, we consider linear mappings δ and τ from a ∗-algebra
A into a ∗-A-bimodule M satisfying

A,B ∈ A, AB∗ = 0 =⇒ 0 = δ(A)B∗ +Aτ(B)∗.(T∗
0)

To our knowledge, a few work has been done up to now. Our next goal is to
characterize linear mappings satisfying T∗

0.
Meanwhile, some papers [1,15,21] gave the structure of derivable mappings

at zero Jordan products. Jordan product is denoted by “ ◦ ” : A◦B = AB+BA.
A linear mapping δ fromA intoM is a Jordan derivable mapping at zero Jordan
products if δ(A) ◦ B + A ◦ δ(B) = 0 for each A,B in A with A ◦ B = 0. Our
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last target is to discuss two linear mappings δ and τ from a ∗-algebra A into a
∗-A-bimodule M satisfying

A,B ∈ A, A ◦B∗ = 0 =⇒ 0 = δ(A) ◦B∗ +A ◦ τ(B)∗.(J∗0)

Let us fix some more notations. A linear mapping δ from A into M is called
a derivation if δ(AB) = δ(A)B+Aδ(B) for each A,B ∈ A; δ is called a Jordan
derivation if δ(A2) = δ(A)A + Aδ(A) for each A ∈ A, which is equivalent to
δ(A◦B) = δ(A)◦B+A◦δ(B) for each A,B inA. It is clear that every derivation
is a Jordan derivation. But the reverse is not always true. Besides, a linear
mapping δ from A into M is called a Jordan left derivation if δ(A2) = 2Aδ(A)
for each A ∈ A. An element W in A is a left (right) separating point of M
if WM = 0 (or MW = 0) implies M = 0 for each M ∈ M. W is called a
separating point if W is both a left separating point and a right separating
point. It is easy to see that left (right) invertible elements in A are left (right)
separating points of M, and invertible elements in A are separating points of
M.

2. Property D∗
W

In this section, we discuss a linear mapping from a unital Banach ∗-algebraA
into a unital ∗-A-bimodule M satisfying D∗

W without continuity. The following
lemma is very important in the proofs of our results.

Lemma 2.1 ([20, Lemma 2.1]). If δ is a linear mapping from a unital Banach
algebra A into a unital A-bimodule M such that Aδ(A−1) + δ(A)A−1 = 0 for
any invertible element A in A, then δ is a Jordan derivation.

Theorem 2.2. Suppose that A is a unital Banach ∗-algebra, M is a unital
∗-A-bimodule, and W is a left separating point of M. If δ is a linear mapping
from A into M satisfying D∗

W , then δ is a Jordan derivation and satisfies
δ(WA) = δ(W )A+Wδ(A∗)∗ for each A in A.

Proof. From IW = WI = W , it follows that δ(W ) = δ(I)W + δ(W ∗)
∗
and

δ(W ) = δ(W ) +Wδ(I∗)
∗
. Since W is a left separating point of M, we have

δ(I) = 0 and δ(W ∗) = δ(W )
∗
.

For each invertible element T in A, δ(W ) = δ(WT−1T ) = δ(WT−1)T +
WT−1δ(T ∗)

∗
, it follows that

δ(WT−1) = δ(W )T−1 −WT−1δ(T ∗)
∗
T−1,(1)

WT−1δ(T ∗)
∗
= δ(W )− δ(WT−1)T.(2)

Let A ∈ A, n ∈ N with n ≥ ∥A∥+ 2, and B = nI +A. Then B and I −B are
both invertible in A. It follows from (1) and (2) that

WB−1δ(B∗)
∗
= δ(W )− δ(WB−1)B

= δ(W )− δ(WB−1(I −B) +W )B
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= δ(W )(I −B)− δ(WB−1(I −B))B

= δ(W )(I −B)− [δ(W )B−1(I −B)

−WB−1(I −B)(δ((I −B)−1B)∗)
∗
B−1(I −B)]B

= WB−1(I −B)(δ((I −B)−1B)∗)
∗
(I −B)

= WB−1(I −B)(δ(I −B)−1∗)
∗
(I −B).

Since W is a left separating point of M, one can obtain

B−1δ(B∗)
∗
= B−1(I −B)(δ(I −B)−1∗)

∗
(I −B).

Thus

δ(B∗)
∗
= (I −B)(δ(I −B)−1∗)

∗
(I −B).

Multiplying W from the left of the above equation,

Wδ(B∗)
∗
= W (I −B)(δ(I −B)−1∗)

∗
(I −B)

= (δ(W )− δ(W (I −B))(I −B)−1)(I −B)

= δ(W )(I −B)− δ(W (I −B))

= −δ(W )B + δ(WB).

Hence

δ(WB) = δ(W )B +Wδ(B∗)
∗
.

It follows that

δ(WA) = δ(W )A+Wδ(A∗)
∗

for each A in A.
For each invertible element T in A, by assumption,

δ(W ) = δ(WTT−1) = δ(WT )T−1 +WTδ(T−1∗)
∗

= (δ(W )T +Wδ(T ∗)∗)T−1 +WTδ(T−1∗)
∗

= δ(W ) +Wδ(T ∗)
∗
T−1 +WTδ(T−1∗)

∗
.

It means that Wδ(T ∗)
∗
T−1+WTδ(T−1∗)

∗
= 0. By assumption, δ(T ∗)

∗
T−1+

Tδ(T−1∗)
∗
= 0. Then

δ(T )T−1 + Tδ(T−1) = 0.

By Lemma 5.1, δ is a Jordan derivation. □

By Theorem 2.2, we can show that the assumption of continuity of result in
[12, Theorem 2.3] can be removed. The following conclusion follows immedi-
ately from what we have proved.

Corollary 2.3. Suppose that A is a unital Banach ∗-algebra and M is a
unital ∗-A-bimodule. If δ is a linear mapping from A into M satisfying δ(I) =
Aδ(B)∗+δ(A)B∗ for all A,B in A with AB∗ = I, then δ is a Jordan derivation.
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If we impose a condition that every Jordan derivation from A into M is a
derivation, we can get a stronger result.

Theorem 2.4. Let A be a unital Banach ∗-algebra and let M be a unital ∗-A-
bimodule. Suppose that every Jordan derivation from A into M is a derivation.
If δ is a linear mapping from A into M satisfying D∗

W , then δ is a ∗-derivation
if and only if W is a left separating point of M.

Proof. First we prove sufficiency for the theorem.
Let δ be a linear mapping from A into M satisfying D∗

W and W be a left
separating point ofM. From Theorem 2.2, δ is a Jordan derivation and satisfies
δ(WA) = δ(W )A+Wδ(A∗)∗ for each A in A. By assumption, δ is a derivation.

Next, we prove δ(A∗) = δ(A)∗ for every A in A. Let A ∈ A, n ∈ N with
n ≥ ∥A∥ + 2, and T = nI + A. Then T is invertible in A. By WTT−1 = W ,
we have

δ(W ) = δ(WT )T−1 +WTδ(T−1∗)
∗
= δ(W ) +Wδ(T )T−1 +WTδ(T−1∗)

∗
.

Hence W [δ(T )T−1 + Tδ(T−1∗)
∗
] = 0, i.e.,

δ(T )T−1 + Tδ(T−1∗)
∗
= 0.

Since δ is a derivation, we have

δ(I) = δ(T )T−1 + Tδ(T−1).

Comparing above two equalities with δ(I) = 0,

Tδ(T−1∗)
∗
= Tδ(T−1),

i.e., δ(T ∗) = δ(T )
∗
. Since T = nI + A, δ(A∗) = δ(A)

∗
for each A in A. Thus,

δ is a ∗-derivation.
Finally, we consider the necessity. If W is not a left separating point of M,

there exists a non-zero element M in M such that WM = 0.
Define a linear mapping δ from A to M as

δ(A) = M∗A

for each A in A. Then δ is a linear mapping and satisfies

A,B ∈ A, AB∗ = W =⇒ Aδ(B)
∗
+ δ(A)B∗ = δ(W ).

However, δ is not a derivation, which leads to a contradiction. □

By Theorem 2.4, we know that if every Jordan derivation from A into M
is a derivation, then every linear mapping from A into M satisfying D∗

W in
which W is a left separating point of M is a ∗-derivation. The problem when a
Jordan derivation is a derivation has caught the attention of mathematicians.
Brešar [9] showed that every Jordan derivation on 2-torsion free semiprime
rings is a derivation. Johnson showed that every continuous Jordan derivation
from a C*-algebra into its Banach bimodule is a derivation in [18, Theorem
6.3]. Peralta and Russo [23, Corollary 17] proved that every Jordan derivation
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from a C*-algebra into its Banach bimodule is continuous. Then Theorem 2.4
generalizes the conclusion in [4, Theorem 1].

Finally, we consider to substitute right separating points for left separating
points in Theorem 2.2.

Corollary 2.5. Suppose that A is a unital Banach ∗-algebra, M is a unital
∗-A-bimodule, and W is a right separating point of M. If δ is a linear mapping
from A into M satisfying D∗

W and δ(I) = 0, then δ is a Jordan derivation.

Proof. From IW = W , we have δ(W ) = δ(I)W + δ(W ∗)
∗
. Since δ(I) = 0, it

follows that δ(W ∗) = δ(W )
∗
. By assumption,

AB∗ = W ∗ =⇒ BA∗ = W =⇒ δ(W ) = Bδ(A)∗ + δ(B)A∗

=⇒ δ(W )∗ = δ(A)B∗ +Aδ(B)∗.

Since δ(W ∗) = δ(W )
∗
,

AB∗ = W ∗ =⇒ δ(W ∗) = δ(A)B∗ +Aδ(B)∗.

By Theorem 2.2, δ is a Jordan derivation. □

Corollary 2.6. Let A be a unital Banach ∗-algebra and M be a unital ∗-A-
bimodule. Suppose that every Jordan derivation from A into M is a derivation.
If δ is a linear mapping from A into M satisfying D∗

W and δ(I) = 0, then δ is
a ∗-derivation if and only if W is a right separating point of M.

Proof. By Theorem 2.4, δ is a ∗-derivation if and only if W is a left separating
point of M. By assumption, we have AB∗ = W ∗ =⇒ δ(W ∗) = δ(A)B∗ +
Aδ(B)∗. Let G = W ∗. Then the linear mapping δ satisfies D∗

G. Hence, δ is a
∗-derivation if and only if G is a left separating point of M. It follows that δ
is a ∗-derivation if and only if W is a right separating point of M. □

Remark 2.7. Suppose that A is a unital Banach ∗-algebra and M is a unital
∗-A-bimodule. Then the following conditions are not equivalent:

AB∗ = W =⇒ δ(W ) = δ(A)B∗ +Aδ(B)∗,(D1)

A∗B = W =⇒ δ(W ) = δ(A)∗B +A∗δ(B).(D2)

If a linear mapping δ satisfies condition (D2) and W is a right separating
point of M, then by suitable modification to the proofs in Theorem 2.2, we
can obtain that δ is a Jordan derivation.

Suppose that every Jordan derivation from A into M is a derivation. If δ
is a linear mapping from A into M satisfying (D2), then δ is a ∗-derivation if
and only if W is a right separating point of M.

3. Property L∗
W

In this section, we deal with the linear mappings satisfying L∗
W at left sep-

arating points and show that the continuity of the results in [4, Theorem 3] is
not necessary.
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Let us start with the lemma showed in [11].

Lemma 3.1 ([11, Lemma 2.1]). Let A be a unital Banach algebra, M be a
unital left A-module, and δ : A → M be a linear mapping. If for each invertible
element A in A, we have Aδ(A−1) + A−1δ(A) = δ(I), then δ is a Jordan left
derivation.

The proof of the following result is similar to the proof of Theorem 2.2.
Nevertheless, we include a proof for completeness.

Theorem 3.2. Let A be a unital Banach ∗-algebra, M be a unital ∗-A-
bimodule, and W be a fixed point in A. If δ is a linear mapping from A
into M satisfying L∗

W and δ(I) = 0, then Wδ is a Jordan left derivation.

Proof. It follows from WI = W that δ(W ) = Wδ(I) + δ(W ∗)∗. Then

δ(W ∗)∗ = δ(W ).

For each invertible element T in A, δ(W ) = δ(TT−1W ) = T−1Wδ(T ) +
T (δ(T−1W )∗)

∗
, it follows that

(δ(T−1W )∗)
∗
= T−1δ(W )− T−2Wδ(T ),(3)

T−1Wδ(T ) = δ(W )− T (δ(T−1W )∗)
∗
.(4)

Let A ∈ A, n ∈ N with n ≥ ∥A∥+ 2, and B = nI +A. Then B and I −B are
both invertible in A. By (3) and (4),

B−1Wδ(B) = δ(W )−B(δ(B−1W )∗)
∗

= (I −B)δ(W )−B[B−1(I −B)δ(W )

− (B−1(I −B))2Wδ((I −B)−1B)]

= (I −B)B−1(I −B)Wδ((I −B)−1B)

= (I −B)B−1[δ(W )− (I −B)−1(δ((I −B)W )∗)
∗
]

= −δ(W ) +B−1(δ(BW )∗)
∗
.

Then we have

(δ(AW )∗)
∗
= Wδ(A) +Aδ(W )

for each A in A.
For each invertible element T in A,

δ(W ) = δ(TT−1W ) = T−1Wδ(T ) + T (δ(T−1W )∗)
∗

= T−1Wδ(T ) + T (Wδ(T−1) + T−1δ(W ))

= T−1Wδ(T ) + TWδ(T−1) + δ(W ).

That is, T−1Wδ(T ) + TWδ(T−1) = 0 = δ(I) for each invertible element T in
A. By Lemma 5.3, Wδ is a Jordan left derivation. □

The following corollary is now evident from what we have proved.
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Corollary 3.3. Let A be a unital Banach ∗-algebra and M be a unital ∗-A-
bimodule. If δ is a linear mapping from A into M satisfying δ(I) = Aδ(B)∗ +
B∗δ(A) for all A,B in A with AB∗ = I, then δ is a Jordan left derivation.

Let us mention two important consequences of Theorem 3.2. We consider
the condition that W is a left separating point. In [3], authors proved that
every Jordan left derivation from C∗-algebra into its Banach left module is
zero. The following corollary extends the result in [4, Theorem 3].

Corollary 3.4. Let A be a unital C∗-algebra, M be a unital Banach ∗-A-
bimodule, and W be a left separating point of M. If δ is a linear mapping from
A into M satisfying L∗

W , then δ is identical with zero.

Proof. By assumption, Wδ is a Jordan left derivation. Hence, Wδ is identical
with zero. i.e., Wδ(A) = 0 for each A in A. Since W is a left separating point
of M,

δ(A) = 0

for each A in A. So δ is identical with zero. □

In [24], Vukman showed that every Jordan left derivation on a complex
semisimple Banach algebra is zero. By Theorem 3.2, we have the following
results.

Corollary 3.5. Let A be a complex unital semisimple Banach ∗-algebra and
W be a left separating point of A. If δ is a linear mapping from A into itself
satisfying L∗

W , then δ = 0.

Next, we prove that if W is a left separating point and WA = AW for all
A ∈ A in Theorem 3.2, then δ is a Jordan left derivation.

Theorem 3.6. Let A be a unital Banach ∗-algebra, M be a unital ∗-A-
bimodule, and W be a left separating point of M. If δ is a linear mapping
from A into M satisfying L∗

W and WA = AW for all A in A, then δ is a
Jordan left derivation.

Proof. From IW = W , we have δ(W ) = Iδ(W ) +Wδ(I∗)
∗
. Since W is a left

separating point of M, it follows that δ(I) = 0. By Theorem 3.2, Wδ is a
Jordan left derivation.

Since WA = AW for all A in A, we have Wδ(A2) = 2AWδ(A) = 2WAδ(A).
It means that δ(A2) = 2Aδ(A) for all A in A. □

Remark 3.7. Suppose that A is a unital Banach ∗-algebra, M is a unital ∗-A-
bimodule, and δ is a linear mapping from A into M satisfying δ(I) = 0. The
following conditions are not equivalent:

AB∗ = W =⇒ δ(W ) = Aδ(B)
∗
+B∗δ(A),(L1)

A∗B = W =⇒ δ(W ) = A∗δ(B) +Bδ(A)
∗
,(L2)

AB∗ = W =⇒ δ(W ) = δ(A)B∗ + δ(B)
∗
A,(R1)
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A∗B = W =⇒ δ(W ) = δ(A)
∗
B + δ(B)A∗.(R2)

If δ satisfies condition (L2), by the similar proof of Theorem 3.2, we can

prove that TWδ(T−1∗)
∗
+ T−1Wδ(T ∗)

∗
= 0 for each invertible element T in

A.
If δ satisfies condition (R1), AB∗ = W ∗ =⇒ BA∗ = W =⇒ δ(W ) =

δ(B)A∗ + δ(A)
∗
B =⇒ δ(W )

∗
= Aδ(B)

∗
+ B∗δ(A). Since δ(W ) = δ(I)W +

δ(W ∗)
∗
I, we obtain that δ(W ∗) = δ(W )

∗
. Then

AB∗ = W ∗ =⇒ δ(W ∗) = Aδ(B)
∗
+B∗δ(A).

Hence W ∗δ is a Jordan left derivation. When W is a right separating point of
M, we can obtain that δ is a Jordan left derivation.

If δ satisfies condition (R2), by using the above transformation, A∗B =

W ∗ =⇒ δ(W ∗) = A∗δ(B)+Bδ(A)
∗
. Then TW ∗δ(T−1∗)

∗
+T−1W ∗δ(T ∗)

∗
= 0

for each invertible element T in A.

Remark 3.8. Let R be a 2-torsion free ring with the unity I which satisfies that
for each T in R, there is some integer n such that nI − T and (n− 1)I − T are
invertible or nI + T and (n− 1)I + T are invertible. If we replace A by R and
replace linear mappings by additive mappings, then the above results are still
true.

4. Property T∗
0

An algebra A is said to be zero product determined if for every bilinear
mapping ϕ from A×A into each linear space X satisfying

ϕ(A,B) = 0, whenever A,B ∈ A, AB = 0,

there exists a linear mapping ω from A into X such that ϕ(A,B) = ω(AB) for
all A,B ∈ A. Bres̆ar [10, Section 5.3] gave some important examples which are
zero product determined algebras.

We denote by F(A) the subalgebra of A generated by all idempotents in A.
Let us recall a definition that is introduced by Ghahramani in [15]. Let A be
an algebra. An A-bimodule M is said to have the property M, if there is an
ideal J ⊆ F(A) of A such that

{M ∈ M : XMX = 0 for every X ∈ J } = {0}.

Moreover, if A = F(A), every A-bimodule has the property M . Note that if
an A-bimodule M has the property M, then

{M ∈ M : XM = MX = 0 for every X ∈ J } = {0}.

In the later case, M is said to have the property P.
We first consider two linear mappings satisfying T∗

0 on unital zero product
determined ∗-algebras.
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Theorem 4.1. Let A be a unital zero product determined ∗-algebra and M be
a unital ∗-A-bimodule. Suppose that δ and τ are linear mappings from A into
M. Then δ and τ satisfy

A,B ∈ A, AB∗ = 0 =⇒ δ(A)B∗ +Aτ(B)∗ = 0

if and only if there exist derivations ∆ and Γ from A into M such that δ(A) =
∆(A) + δ(I)A, τ(A) = Γ(A) + τ(I)A, and ∆(A∗) = Γ(A)∗ for each A in A.

Proof. The sufficiency is obvious, we only need to prove the necessity. Define
linear mappings ∆ and Γ from A into M by

∆(A) = δ(A)− δ(I)A and Γ(A) = τ(A)− τ(I)A

for each A in A. It is obvious that ∆(I) = 0 = Γ(I) and

∆(A)B∗ +AΓ(B)∗ = 0

for each A,B ∈ A with AB∗ = 0. In the following, we show that ∆ and Γ are
derivations, and ∆(A)∗ = Γ(A∗) for each A in A.

Define a bilinear mapping ϕ : A×A → M by ϕ(A,B) = ∆(A)B+AΓ(B∗)∗

for each A,B in A. Thus AB = A(B∗)∗ = 0 implies ϕ(A,B) = 0. Since A is a
zero product determined algebra, there exists a linear mapping ω from A into
M such that

∆(A)B +AΓ(B∗)∗ = ω(AB)(5)

for each A,B in A. Now let A = I in (5), we obtain ω(B) = ∆(I)B + Γ(B∗)∗

for each B in A. It follows that ω(B) = Γ(B∗)∗ for each B in A. And let
B = I in (5), ω(A) = ∆(A) for each A in A. Thus, ∆(A∗) = ω(A∗) = Γ(A)∗.
By equation (5),

∆(AB) = ω(AB) = ∆(A)B +AΓ(B∗)∗

= ∆(A)B +Aω(B)

= ∆(A)B +A∆(B)

for each A,B in A, i.e., ∆ is a derivation. One can easily verify that Γ is also
a derivation in the same way. □

In the remainder of this section, we consider two linear mappings δ and τ
from a unital ∗-algebra A into a unital ∗-A-bimodule M with the property P
satisfying (T∗

0).

Theorem 4.2. Let A be a unital ∗-algebra and M be a unital ∗-A-bimodule
with the property P. Suppose that δ and τ are linear mappings from A into M.
Then δ and τ satisfy

A,B ∈ A, AB∗ = 0 =⇒ δ(A)B∗ +Aτ(B)∗ = 0

if and only if there exist derivations ∆ and Γ from A into M such that δ(A) =
∆(A) + δ(I)A, τ(A) = Γ(A) + τ(I)A and ∆(A)∗ = Γ(A∗) for each A in A.
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Proof. We only need to prove the necessity. Define a linear mapping τ̂ from A
into M by τ̂(A) = τ(A∗)∗ for each A ∈ A. By assumption

δ(A)B +Aτ(B∗)∗ = 0

for each A,B in A with AB = 0, we have

δ(A)B +Aτ̂(B) = 0

for each A,B in A with AB = 0. From [19, Theorem I], there exists a derivation
∆ from A into M such that ∆(A) = δ(A)− δ(I)A = τ̂(A)−Aτ̂(I) for each A
in A. Therefore,

τ(A∗)− τ(I)A∗ = (δ(A)− δ(I)A)∗

for each A in A. Denote the linear mapping Γ by Γ(A) = τ(A) − τ(I)A for
each A in A. Then Γ(A∗) = ∆(A)∗.

It remains to show that Γ is a derivation. Since ∆ is a derivation, we have

Γ(AB) = ∆((AB)∗)∗ = ∆(B∗A∗)∗

= (∆(B∗)A∗ +B∗∆(A∗))∗

= A∆(B∗)∗ +∆(A∗)∗B

= AΓ(B) + Γ(A)B.

for each A, B in A. This completes the proof. □

In [12], Fadaee, Fallahi and Ghahramani considered ∗-derivable mappings
at zero on unital zero product determined ∗-algebras or standard operator
algebras. However, as a corollary of Theorem 4.2, we can immediately get the
following result that is an extension of [12, Theorem 3.2].

Corollary 4.3. Let A be a unital ∗-algebra and M be a unital ∗-A-bimodule
with the property P. Suppose that δ is a linear mapping from A into M. Then
δ satisfies

A,B ∈ A, AB∗ = 0 =⇒ δ(A)B∗ +Aδ(B)∗ = 0

if and only if there exists a ∗-derivation ∆ from A into M such that δ(A) =
∆(A) + δ(I)A for every A in A.

5. Property J∗0
In this section, we characterize two linear mappings satisfying (J∗0) from a

unital algebra into its unital bimodule with the property M. The structure of
linear mappings behaving like Jordan derivations at commutative zero products
has been studied extensively. We refer the reader to [16,21] for more details.

We start by recalling a result concerning Jordan derivable mappings at zero
Jordan products which can be found in [15].
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Lemma 5.1 ([15]). Let A be a unital algebra and M be a unital A-bimodule
with the property M. Suppose that δ is a linear mapping from A into M
satisfying

A,B ∈ A, A ◦B = 0 =⇒ δ(A) ◦B +A ◦ δ(B) = 0.

Then there exists a Jordan derivation ∆ from A into M such that

δ(A) = ∆(A) +Aδ(I)

and Aδ(I) = δ(I)A for every A in A.

The following auxiliary lemma will be needed frequently later.

Lemma 5.2 ([15, Theorem 3.3]). If ϕ is a bilinear mapping from A×A into
a vector spaces X such that

A,B ∈ A, A ◦B = 0 =⇒ ϕ(A,B) = 0,

then

ϕ(A,X) =
1

2
ϕ(AX, I) +

1

2
ϕ(XA, I)

for every A in A and X in F(A).

Lemma 5.3. Let A be a unital algebra and M be a unital A-bimodule with the
property M. Suppose that δ is a linear mapping from A into M satisfying

A,B ∈ A, A ◦B = 0 =⇒ δ(A) ◦B −A ◦ δ(B) = 0.

Then δ(A) = 1
2 (Aδ(I) + δ(I)A) for every A in A.

Proof. Define a bilinear mapping ϕ from A×A into M by ϕ(A,B) = δ(A)◦B−
A ◦ δ(B) for every A,B in A. By the definition of ϕ, it follows that A ◦B = 0
implies ϕ(A,B) = 0. In account of Lemma 5.2, for every A in A and every X
in J ⊂ F(A), we have

δ(I) ◦X − I ◦ δ(X) = δ(X) ◦ I −X ◦ δ(I),(6)

δ(A) ◦X −A ◦ δ(X) =
1

2
[δ(AX) ◦ I −AX ◦ δ(I) + δ(XA) ◦ I −XA ◦ δ(I)]

= δ(AX +XA)− 1

2
[(AX +XA) ◦ δ(I)].(7)

It follows from (6) that

X ◦ δ(I) = 2δ(X).(8)

Since J is an ideal, AX ◦ δ(I) = 2δ(AX), XA ◦ δ(I) = 2δ(XA) for all A in A
and X in J . Then δ(AX +XA) = 1

2 (AX +XA) ◦ δ(I). In view of (7),

A ◦ δ(X) = δ(A) ◦X(9)

for every A in A and X in J .
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Define a linear mapping ∆ : A → M by ∆(A) = δ(A) − 1
2 (Aδ(I) + δ(I)A)

for every A in A. It is easy to verify ∆(X) = 0 = ∆(AX) = ∆(XA). It is
enough to prove that ∆ = 0. Using (8) together with (9), we arrive at

∆(A) ◦X = δ(A) ◦X − 1

2
[δ(I)AX +Aδ(I)X +Xδ(I)A+XAδ(I)]

= A ◦ δ(X)− 1

2
[δ(I)AX +Aδ(I)X +Xδ(I)A+XAδ(I)]

= A ◦∆(X) +
1

2
[δ(I)XA+Xδ(I)A+Aδ(I)X +AXδ(I)]

− 1

2
[δ(I)AX +Aδ(I)X +Xδ(I)A+XAδ(I)]

=
1

2
[δ(I)(XA−AX) + (AX −XA)δ(I)].(10)

Replacing A by AX and XA, respectively, in (10), one can obtain

0 = ∆(AX) ◦X =
1

2
[δ(I)(XAX −AX2) + (AX2 −XAX)δ(I)],(11)

0 = ∆(XA) ◦X =
1

2
[δ(I)(X2A−XAX) + (XAX −X2A)δ(I)].(12)

Adding (11) and (12), we get

0 = δ(I)(X2A−AX2) + (AX2 −X2A)δ(I).(13)

In particular, for any idempotent P , by (10) and (13), we conclude that

0 = δ(I)(PA−AP ) + (AP − PA)δ(I)

= 2∆(A) ◦ P
= 2∆(A)P + 2P∆(A).(14)

Multiplying P on both sides, the left and the right of (14), respectively, we
arrive at 0 = P∆(A)P = P∆(A) = ∆(A)P for any idempotent P . Hence
0 = X∆(A)X = ∆(A)X = X∆(A) for all X ∈ J . It follows from property M
that ∆(A) = 0 for all A ∈ A. □

Theorem 5.4. Let A be a unital algebra and M be a unital A-bimodule with
the property M. Suppose that δ and τ are linear mappings from A into M
satisfying

A,B ∈ A, A ◦B = 0 =⇒ δ(A) ◦B +A ◦ τ(B) = 0.

Then there exists a Jordan derivation ∆ from A into M such that

δ(A) = ∆(A) + δ(I)A, τ(A) = ∆(A) +Aτ(I)

for every A in A.

Proof. For all A,B ∈ A with A ◦B = 0, we have δ(A) ◦B +A ◦ τ(B) = 0 and
δ(B) ◦A+B ◦ τ(A) = 0. Comparing the above equations, we get

(δ + τ)(A) ◦B +A ◦ (δ + τ)(B) = 0,
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(δ − τ)(A) ◦B −A ◦ (δ − τ)(B) = 0.

It follows from Lemma 5.1 that there exists a Jordan derivation ∆′ such that
(δ+τ)(A) = ∆′(A)+(δ+τ)(I)A, where (δ+τ)(I)A = A(δ+τ)(I) for all A ∈ A.
According to Lemma 5.3, we obtain (δ− τ)(A) = 1

2 [A(δ− τ)(I) + (δ− τ)(I)A]
for all A ∈ A. We conclude that

2δ(A) = ∆′(A) + (δ + τ)(I)A+
1

2
[A(δ − τ)(I)− (δ − τ)(I)A] + (δ − τ)(I)A

= ∆′(A) +
1

2
[A(δ − τ)(I)− (δ − τ)(I)A] + 2δ(I)A,

2τ(A) = ∆′(A) +A(δ + τ)(I) +
1

2
[A(δ − τ)(I)− (δ − τ)(I)A]−A(δ − τ)(I)

= ∆′(A) +
1

2
[A(δ − τ)(I)− (δ − τ)(I)A] + 2Aτ(I)

for all A in A. It is clear that ∆ := 1
2∆

′ + 1
4 [A(δ − τ)(I)− (δ − τ)(I)A] is also

a Jordan derivation. □

In particular, by Theorem 5.4, we obtain the following corollary which gener-
alized Bahmani and Ghomanjani’s result [6] on zero Jordan product determined
algebras.

Corollary 5.5. Let A be a unital algebra and M be a unital A-bimodule with
the property M. Suppose that φ is a linear mapping from A into M satisfying

A,B ∈ A, A ◦B = 0 =⇒ φ(A) ◦B = 0.

Then φ(A) = φ(I)A = Aφ(I) for every A in A.

Proof. First, taking τ = 0 and δ = φ in Theorem 5.4, we have φ(A) = φ(I)A.
On the other hand, we also have A ◦φ(B) = 0 for all A,B ∈ A with B ◦A = 0.
Taking δ = 0, τ = φ in Theorem 5.4, we obtain φ(A) = Aφ(I). □

By Theorem 5.4 and the proof of Theorem 4.2, we now state and prove our
result in this section.

Corollary 5.6. Let A be a unital ∗-algebra and M be a unital ∗-A-bimodule
with the property M. If δ and τ are linear mappings from A into M satisfying

A,B ∈ A, A ◦B∗ = 0 =⇒ δ(A) ◦B∗ +A ◦ τ(B)∗ = 0,

then there exist Jordan derivations ∆ and Γ from A into M such that δ(A) =
∆(A) + δ(I)A, τ(A) = Γ(A) + τ(I)A, and ∆(A∗) = Γ(A)∗ for every A in A.

Proof. Define a linear mapping τ̂ from A into M by τ̂(A) = τ(A∗)∗ for every
A in A. Then

A ◦ τ̂(B) + δ(A) ◦B = A ◦ τ(B∗)∗ + δ(A) ◦B = 0
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for each A,B in A with A ◦ B = A ◦ B∗∗ = 0. Thus δ and τ̂ satisfy the
conditions of Theorem 5.4, there exists a Jordan derivation ∆ from A into M
such that

∆(A) = δ(A)− δ(I)A = τ̂(A)−Aτ̂(I).

Denote the linear mapping Γ from A into M by Γ(A) = τ(A)−τ(I)A for every
A in A. Therefore

∆(A) = δ(A)−Aδ(I) = (τ(A∗)− τ(I)A∗)∗ = Γ(A∗)∗.

At the same time,

Γ(A2) = ∆((A2)∗)∗ = ∆((A∗)2)∗ = [∆(A∗)A∗ +A∗∆(A∗)]∗

= AΓ(A) + Γ(A)A

for every A in A, i.e., Γ is a Jordan derivation. □

Remark 5.7. Suppose that A is a unital ∗-algebra and M is a unital ∗-A-
bimodule with the property M, and δ is a linear mapping from A into M. The
authors [5, Theorem 3.6] showed that if δ satisfies

A,B ∈ A, A ◦B∗ = 0 =⇒ δ(A) ◦B∗ +A ◦ δ(B)∗ = 0, δ(I)A = Aδ(I),

then there exists a Jordan derivation ∆ from A into M such that δ(A) =
∆(A) + δ(I)A and ∆(A∗) = ∆(A)∗ for every A in A. In fact, by Theorem 5.6,
the above condition δ(I)A = Aδ(I) is unnecessary if δ = τ .
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[9] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988),

no. 4, 1003–1006. https://doi.org/10.2307/2047580
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