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ALMOST WEAKLY FINITE CONDUCTOR RINGS AND

WEAKLY FINITE CONDUCTOR RINGS

Hanan Choulli, Haitham El Alaoui, and Hakima Mouanis

Abstract. Let R be a commutative ring with identity. We call the

ring R to be an almost weakly finite conductor if for any two elements
a and b in R, there exists a positive integer n such that anR ∩ bnR is

finitely generated. In this article, we give some conditions for the trivial
ring extensions and the amalgamated algebras to be almost weakly finite

conductor rings. We investigate the transfer of these properties to trivial

ring extensions and amalgamation of rings. Our results generate examples
which enrich the current literature with new families of examples of non-

finite conductor weakly finite conductor rings.

1. Introduction

We assume throughout that all rings are commutative with 1 6= 0 and that
all modules are unital. Recall that a ring R is said to be coherent if every
finitely generated ideal of R is finitely presented. In commutative algebra, a
coherent ring is a relevant topic. Due to its importance, not only coherent rings
but also several kinds of rings related to coherent rings have been studied by
many mathematicians. Finite conductor rings and weakly coherent rings are
examples of rings related to coherent rings. For more details, see [4, 15].

In 1960, according to Chase [5], R is a coherent domain if and only if the
intersection of any two finitely generated ideals is again finitely generated. In
1973, Dobbs [12] introduced the concept of “finite conductor domain” in which
every intersection of two principal ideals is a finitely generated ideal. Coher-
ent domains and Greatest Common Divisor (GCD) domains (such that the
intersection of any two principal ideals is again principal) are trivial examples
of finite conductor domains. In 2000, Glaz extended the definition of a finite
conductor domains to rings with zero divisors, that is, the intersection of two
principal ideals is a finitely generated ideal and annR(a) is finitely generated
for every element a of R [15]. Also, in the same paper, Glaz shows that R is
a finite conductor ring if and only if any ideal I of R with µ(I) ≤ 2 is finite
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presented, where µ(I) denotes the cardinality of a minimal set of generators of
I.

For a ring A and an A-module E, the trivial ring extension of A by E is the
ring R := A n E where the underlying group is A × E and the multiplication
is defined by (a, e)(b, f) = (ab, af + be). The ring R is also called the Nagata
idealization of E over A and is denoted by A(+)E. This construction was first
introduced, in 1962, by Nagata [20] in order to facilitate interaction between
rings and their modules and also to provide various families of examples of
commutative rings containing zero-divisors. The literature abounds of papers
on trivial extensions dealing with the transfer of ring-theoretic notions in vari-
ous settings of these constructions (see, for instance, [2–4,6, 16, 18]). For more
details on commutative trivial extensions (or idealizations), we refer the reader
to Glaz’s and Huckaba’s respective books [14,16], and also D. D. Anderson and
Winders relatively recent and comprehensive survey paper [2].

The amalgamation algebras along an ideal, introduced and studied by
D’Anna, Finocchiaro and Fontana in [7–9] and defined as follows:

Let A and B be two rings, J an ideal of B and let f : A −→ B be a ring
homomorphism. In this setting, we can consider the following subring of A×B:

A ./f J = {(a, f(a) + j) : a ∈ A, j ∈ J}

called the amalgamation of A and B along J with respect to f . In particular,
they have studied amalgamations in the frame of pullbacks which allowed them
to establish numerous (prime) ideal and ring-theoretic basic properties for this
new construction. This construction is a generalization of the amalgamated
duplication of a ring along an ideal (introduced and studied by D’Anna and
Fontana in [10,11]). See for instance [7–9,13,17]. Moreover, other classical con-
structions (such as the A+XB[X], A+XB[[X]], and the D+M constructions)
can be studied as particular cases of the amalgamation [7, Examples 2.5 and
2.6].

In 2004, Mahdou established necessary and sufficient conditions for the triv-
ial ring extensions to be weakly finite conductor rings [19]. In 2018, we gave
some characterizations of the property weakly finite conductor to amalgamated
algebras along an ideal [13]. The purpose of this paper is to study the possible
transfer of the property weakly finite conductor to trivial ring extensions and
amalgamated. Also, we investigate a new class of rings called, almost weakly
finite conductor rings, over which every two elements a and b in R, there exists
a positive integer n such that anR ∩ bnR is finitely generated. Examples of al-
most weakly finite conductor rings are weakly finite conductor rings and almost
(GCD) domains (i.e., for all x, y ∈ R there exists an n ∈ N such that xnR∩ynR
is principal). The latter introduced by Zafrullah in [21] as a generalization of
(GCD) domains.

The goal of Section 2 of this article is to provide necessary and sufficient
conditions for trivial ring extensions and amalgamated algebras along an ideal
to be an almost weakly finite conductor ring. Our aim is to prove that almost



(AWFC)-RINGS AND (WFC)-RINGS 329

weakly finite conductor rings are not weakly finite conductor rings, in general.
The third section deals with the transfer of the notion of weakly finite conductor
property to the pre-mentioned ring extensions. In order to give new results
to enrich the current literature with new families of examples of non-finite
conductor weakly finite conductor rings.

2. Almost weakly finite conductor rings

Definition 2.1. Let R be a ring. R is called an almost weakly finite conductor
ring, simply (AWFC)-ring, if, for any two elements a and b in R, there exists a
positive integer n such that the ideal anR ∩ bnR is finitely generated.

The first purpose of this section is to investigate the possible transfer of the
almost weakly finite conductor property to various trivial extension contexts.
Recall that a module over a domain is divisible if each element of the module
is divisible by every nonzero element of the domain.

Theorem 2.1. Let A be a ring, E be a nonzero A-module, and R := An E.

(1) If R is an (AWFC)-ring, then A is an (AWFC)-ring.
(2) Suppose that A is a domain and E is a divisible A-module. Then, R is

an (AWFC)-ring if and only if so is A.
(3) Let A be a local ring with a maximal ideal M , and E be an A-module

such that M =
√
Ann(E). Then, R is an (AWFC )-ring if and only if

so is A.

Proof. (1) Suppose that R is an (AWFC)-ring, and let a and b ∈ A. Then there
exists a positive integer n such that the ideal R(a, 0)n ∩ R(b, 0)n = R(an, 0) ∩
R(bn, 0) is a finitely generated ideal of R. Therefore, the ideal anA ∩ bnA is a
finitely generated ideal of A, and hence A is an (AWFC)-ring.

(2) Suppose that A is a domain and E is a divisible A-module. If R is an
(AWFC)-ring, then so is A by (1). Conversely, let (a, e) and (b, f) ∈ R. We will
show that there exists a positive integer n such that R(a, e)n∩R(b, f)n is finitely
generated. If a = 0 or b = 0; it suffices to take n = 2. Suppose on the contrary,
a 6= 0 and b 6= 0. First, notice that (a, e)n = (an, nan−1e) for all n ≥ 1.
Now, assume that A is an (AWFC)-ring. Then, there exists a positive integer
n such that anA ∩ bnA =

∑m
i=1Aci where ci ∈ A for every i ∈ {1, . . . ,m}.

Let y ∈ R(a, e)n ∩ R(b, f)n. It is easily seen that y is written in the form
y = (

∑m
i=1 αici, z) = (α1c1, z) + (α2c2, 0) + · · · + (αmcm, 0) where αi ∈ A

for every i ∈ {1, . . . ,m} and z ∈ E. By divisibility assumption, we obtain
z = c1β for some β ∈ E. Hence y = (α1, β)(c1, 0) + (α2c2, 0) + · · ·+ (αmcm, 0).
Therefore R(a, e)n ∩ R(b, f)n ⊂

∑m
i=1R(ci, 0). For the reverse inclusion, we

have ci ∈ anA ∩ bnA for all i ∈ {1, . . . ,m}. So, there exist α1, . . . , αm and
β1, . . . , βm such that ci = αia

n = βib
n for all i ∈ {1, . . . ,m}. Further, by

divisibility, we obtain, for each i ∈ {1, . . . ,m}, 0 = αina
n−1e − kia

n and
0 = βinb

n−1f − tibn for some ki, ti ∈ E. Hence, (ci, 0) = (αi,−ki)(a, e)n =
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(βi,−ti)(b, f)n ∈ R(a, e)n∩R(b, f)n. Thus, R(a, e)n∩R(b, f)n =
∑m

i=1R(ci, 0),
and hence R is an (AWFC)-ring.

(3) By (1), it suffices to prove the “if” assertion. Let (a, e) and (b, f) ∈ R. If
a (resp., b) is a unit of A, then (a, e) (resp., (b, f)) is a unit of R by [16, Theorem
25.1(6)], and so R(a, e) ∩ R(b, f) = R. Thus, we may assume, without loss of

generality, that both a and b are in M . As M =
√
Ann(E), there exist positive

integers n and m such that an ∈ Ann(E) and bm ∈ Ann(E). Then we get

(a, e)nm+1 = (anm+1, (nm+ 1)anme) = (anm+1, 0),

(b, f)nm+1 = (bnm+1, (nm+ 1)bnmf) = (bnm+1, 0).

SinceA is an (AWFC)-ring, there exists a positive integer p such thatAa(nm+1)p

∩Ab(nm+1)p is finitely generated. Therefore, R(a, e)(nm+1)p ∩R(b, f)(nm+1)p is
finitely generated, as desired. �

The following corollaries are an immediate consequence of Theorem 2.1.

Corollary 2.1. Let A be a domain, K := qf(A), E be a K-vector space, and
R := AnE the trivial ring extension of A by E. Then, R is an (AWFC)-ring
if and only if so is A.

Corollary 2.2. Let A be a local ring with a maximal ideal M , and E be an
A-module such that ME = 0, and R := A n E the trivial ring extension of A
by E. Then, R is an (AWFC )-ring if and only if so is A.

Now, we are able to construct a non-weakly finite conductor ring which is
an (AWFC)-ring.

Example 2.1. Let (A,M) be a nondiscrete valuation domain. Then, R :=
AnA/M satisfies the following statements:

(1) R is an (AWFC)-ring, by Corollary 2.2;
(2) R is not a weakly finite conductor ring, by [19, Theorem 2.1] since M

is not a finitely generated ideal of A.

Next, we study the transfer of the almost weakly finite conductor property
to amalgamation of rings.

Proposition 2.1. Let A be a domain, f : A −→ B be a ring homomorphism
and J be a non-finitely generated regular ideal of B such that f(A) ∩ J = (0)
(e.g., let A := K, B := K[[X1, . . . ]] = K + M denote the ring of formal power
series over the field K in the indeterminates (Xi)i=1,...,∞, J := M and f the
inclusion map of A into B). Then, R := A ./f J is an (AWFC)-ring if and
only if f−1(J) = 0 and f(A) + J is an (AWFC)-ring.

Proof. Assume that R := A ./f J is an (AWFC)-ring and f−1(J) 6= 0. Let
i ∈ f−1(J)r {0} and j be a regular element of J . Then there exists a positive
integer n such that the ideal R(i, j)n ∩ R(0, j)n is a finitely generated ideal of
R. Set R(in, jn) ∩ R(0, jn) =

∑m
i=1R(ci, f(ci) + di) where ci ∈ A and di ∈ J

for all i ∈ {1, . . . ,m}. Then there exist (αi, f(αi) + ei) and (βi, f(βi) + fi)
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such that (ci, f(ci) + di) = (αi, f(αi) + ei)(i
n, jn) = (βi, f(βi) + fi)(0, j

n) for
each i ∈ {1, . . . ,m}. Hence, ci = αii

n = 0 for each i ∈ {1, . . . ,m}. Since
A is a domain and 0 6= in, we get that αi = 0 and f(αi) = 0 for each i ∈
{1, . . . ,m}. Therefore, di = eij

n for each i ∈ {1, . . . ,m}. On the other hand,
let x ∈ J . Then, it’s clear that (0, xjn) ∈ R(i, j)n ∩ R(0, j)n so there exists
(γi, f(γi)+ki)1≤i≤m ∈ Rm such that (0, xjn) =

∑m
i=1(γi, f(γi)+ki)(ci, f(ci)+

di) =
∑m

i=1(0, (f(γi)+ki)di). Thus, xjn =
∑m

i=1(f(γi)+ki)di =
∑m

i=1(f(γi)+
ki)eij

n. Hence J =
∑m

i=1(f(A)+J)ei, which is absurd since J is a non-finitely
generated ideal of B. It follows that f−1(J) = 0. Moreover f(A) + J is an
(AWFC)-ring by [7, Proposition 5.1(3)]. Conversely, since f−1(J) = 0, we
have from [7, Proposition 5.1(3)] A ./f J ∼= f(A) + J . Therefore A ./f J is an
(AWFC)-ring. �

We use the notation Nilp(B) to denote the set of all nilpotent elements of
B.

Proposition 2.2. Let A and B be a pair of rings and f : A −→ B be a
ring homomorphism. Suppose that A is a local ring with a maximal ideal M ,
and J is a proper ideal of B such that f(M)J = 0 and J ⊆ Nilp(B). Then
R := A ./f J is an (AWFC)-ring if and only if so is A.

The proof of this proposition requires the following preparatory lemma which
is an immediate consequence of [7, Proposition 5.1(3)] and the fact that if A is
an (AWFC)-ring and I is an ideal of A, then A/I is an (AWFC)-ring.

Lemma 2.1. Let A and B be two rings, f : A −→ B be a ring homomorphism
and J a nonzero proper ideal of B. If A ./f J is an (AWFC)-ring, then so are
A and f(A) + J .

Proof of Proposition 2.2. If R is an (AWFC)-ring, then A is an (AWFC)-ring
by Lemma 2.1. Conversely, assume that A is an (AWFC)-ring, and let (a, f(a)+
e) and (b, f(b) + k) ∈ R. If a or b is a unit of A, then R(a, f(a) + e) = R or
R(b, f(b) + k) = R by [17, Remark 2.1(1)]; and so we are done. Thus we may
assume that a, b ∈ M . But since e, k ∈ J , there exist positive integers n and
m such that en = 0 and km = 0. As A is an (AWFC)-ring, there is a positive

integer p such that Aanmp ∩ Abnmp =
∑j

i=1Aci, where ci ∈ A for each i ∈
{1, . . . , j}. By applying binomial theorem (which is valid in any commutative
ring), we get that R(a, f(a) + e)nmp ∩ R(b, f(b) + k)nmp = R(a, f(a))nmp ∩
R(b, f(b))nmp. Hence R(a, f(a) + e)nmp ∩R(b, f(b) + k)nmp =

∑j
i=1(ci, f(ci));

and therefore R is an (AWFC)-ring. �

Now, we give a second example of an (AWFC)-ring which is not a weakly
finite conductor ring.

Example 2.2. Let A be a local coherent domain with maximal M and E :=
A
M [X]. Set B := AnE and J := 0nE. Consider the homomorphism f : A −→
B (f(a) = (a, 0)). Then:
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(1) A ./f J is an (AWFC)-ring, by Proposition 2.2.
(2) A ./f J is not a weakly finite conductor, by [13, Theorem 1(2)b)], since

E is not of finite rank.

3. Weakly finite conductor rings ((WFC)-rings)

The first aim of this section is to examine the transfer of weakly finite con-
ductor property to the context of trivial extensions of domains by divisible
modules. In this vein, we will use Mahdou definition of a weakly finite conduc-
tor ring; that is, the intersection of two principal ideals is a finitely generated
ideal [19].

Theorem 3.1. Let A be a Noetherian domain and E be a divisible A-module.
Then, R := An E is a (WFC)-ring.

Proof. Let I = R(a, e) and J = R(b, f) be two principal ideals, where a, b ∈ A
and e, f ∈ E. Then there are three possible cases.
Case 1: a = b = 0. Hence I = R(0, e) = 0 n Ae and J = R(0, f) = 0 n Af .
Then, Ae∩Af ⊆ Ae+Af which is a finitely generated A-module. So Ae∩Af =∑n

i=1Aai, where ai ∈ Ae ∩ Af for each i ∈ {1, . . . , n} since A is a Notherian
domain. Therefore, I ∩ J = 0 nAe ∩Af = 0 n

∑n
i=1Aai =

∑n
i=1R(0, ai) is a

finitely generated ideal of R.
Case 2: a 6= 0 and b = 0 or a = 0 and b 6= 0. By symmetry, we may assume
that a 6= 0 and b = 0. Then, I = R(a, e) = Aa n E by [1, Lemma 2.3] and
J = R(0, f) = 0nAf . Thus, J ⊆ I and I ∩J = J which is a finitely generated
ideal of R.
Case 3: a 6= 0 and b 6= 0. Hence, I = R(a, e) = Aa n E and J = R(b, f) =
AbnE. Let Aa∩Ab =

∑n
i=1Aai, where ai ∈ Ar{0} since A is a (WFC)-ring.

Hence,

I ∩ J =(Aan E) ∩ (Abn E) = (Aa ∩Ab) n E

=(

n∑
i=1

Aai) n E =

n∑
i=1

R(ai, 0) (see the proof of [1, Lemma 2.3]).

Thus, I ∩ J is a finitely generated ideal of R. �

Theorem 3.1 enriches the literature with original examples of (WFC)-rings
which are not finite conductor rings. Recall that a ring R is a finite conductor
ring if aR ∩ bR and (0 : c) are finitely generated for any a, b, c ∈ R [15].

Example 3.1. Let A := Z and E := Q[X]. Then:

(1) An E is a (WFC)-ring;
(2) An E is not a finite conductor ring.

Proof. (1) It follows from Theorem 3.1.
(2) Let c := (0, 1) ∈ A n E. It can easily be seen that (0 : c) = 0 n E. So,

An E is not a finite conductor ring. �
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In our main results of this section in which we give a new characterization
of the weakly finite conductor property to amalgamation of rings.

Proposition 3.1. Let A be a domain, f : A −→ B be a ring homomorphism
and J be a non-finitely generated regular ideal of B such that f(A) ∩ J = (0).
Then, R := A ./f J is a (WFC)-ring if and only if f−1(J) = 0 and f(A) + J
is a (WFC)-ring.

Proof. By [7, Proposition 5.1(3)], we need only prove to that if R is a (WFC)-
ring, then f−1(J) = 0. Suppose on the contrary, i.e., f−1(J) is a nonzero ideal
ofA. Let i ∈ f−1(J)r{0} and j be a regular element of J . SetR(i, j)∩R(0, j) =∑n

i=1R(ci, f(ci) + di) where ci ∈ A and di ∈ J for all i ∈ {1, . . . , n}. With
a similar argument of the proof of Proposition 2.1, we get that J is a finitely
generated ideal of B, which is a contradiction since J is a non-finitely generated
ideal of B. Hence f−1(J) = 0, as desired. �

Theorem 3.2. Let A be a domain, f : A −→ B be a ring homomorphism and
J be a non-finitely generated ideal of B.

(1) Suppose that, f(Ar {0}) ⊆ Reg(B). If A ./f J is a (WFC)-ring, then
f(A) ∩ J = 0.

(2) Suppose that, J is regular. If A ./f J is a (WFC)-ring, then f is
injective.

Proof. (1) Suppose the statement is false, i.e., f(A) ∩ J 6= 0, and choose an
element a ∈ A such that f(a) ∈ J r {0}. Then (0, f(a)) is an element of
A ./f J . Since A ./f J is a (WFC)-ring, the ideal R(0, f(a)) ∩ R(a, f(a)) is
finitely generated. Set R(0, f(a)) ∩ R(a, f(a)) =

∑m
i=1A ./f J(di, f(di) + ei)

for some d1, . . . , dm ∈ A and e1, . . . , em ∈ J . Then for each i ∈ {1, . . . ,m}
there exist (αi, f(αi) + ki) and (βi, f(βi) + γi) in A ./f J such that

(di, f(di) + ei) = (αi, f(αi) + ki)(0, f(a)) = (βi, f(βi) + γi)(a, f(a)).

Thus, di = 0 for all i ∈ {1, . . . ,m}. Also, βi = 0 since aβi = 0 for all
i ∈ {1, . . . ,m} and A is a domain. Therefore ei = f(a)γi for all i ∈ {1, . . . ,m}.
On the other hand, let x ∈ J . Then, one can easily check that (0, xf(a)) ∈
R(0, f(a))∩R(a, f(a)). Hence, there exist (ci, f(ci) + bi)

m
i=1 ∈ (A ./f J)m such

that

(0, xf(a)) =

m∑
i=1

(ci, f(ci) + bi)(di, f(di) + ei)

=

m∑
i=1

(ci, f(ci) + bi)(0, ei).

From the previous equalities, we deduce that xf(a) =
∑m

i=1(f(ci) + bi)ei =∑m
i=1(f(ci)+ bi)γif(a). As f(a) is regular, we get that x =

∑m
i=1(f(ci)+ bi)γi.

We conclude that J is finitely generated, which is absurd.
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(2) Assume that A ./f J is a (WFC)-ring, and suppose that f is not injective.
Let a ∈ Ker(f) ∩ (A r {0}) and u be a regular element of J . From the
assumption we can write R(0, u) ∩ R(a, u) =

∑m
i=1A ./f J(di, f(di) + ei) for

some (d1, f(d1)+e1), . . . , (dm, f(dm)+em) in A ./f J . With a similar argument
as in the statement (1), we get that J is non-finitely generated. This completes
the proof of Theorem 3.2. �

Corollary 3.1. Let A and B be a pair of domains, f : A −→ B be a ring
homomorphism, and J be a non-finitely generated ideal of B. Then A ./f J
is a (WFC)-ring if and only if f is injective, f(A) + J is a (WFC)-ring, and
f(A) ∩ J = 0.

Proof. By Theorem 3.2(1) and (2), we need only prove the sufficient condition.
As f is injective and f(A) ∩ J = 0, then A ./f J ∼= f(A) + J by the natural
projection pB . But since f(A) + J is a (WFC)-ring, A ./f J is a (WFC)-ring
as desired. �

Acknowledgement. The authors sincerely thank the referees for several com-
ments.
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