• Title/Summary/Keyword: C/C-SiC-Cu

Search Result 541, Processing Time 0.024 seconds

Hydrogen and Ethanol Gas Sensing Properties of Mesoporous P-Type CuO

  • Choi, Yun-Hyuk;Han, Hyun-Soo;Shin, Sun;Shin, Seong-Sik;Hong, Kug-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.222-222
    • /
    • 2012
  • Metal oxide gas sensors based on semiconductor type have attracted a great deal of attention due to their low cost, flexible production and simple usability. However, most works have been focused on n-type oxides, while the characteristics of p-type oxide gas sensors have been barely studied. An investigation on p-type oxides is very important in that the use of them makes possible the novel sensors such as p-n diode and tandem devices. Monoclinic cupric oxide (CuO) is p-type semiconductor with narrow band gap (~1.2 eV). This is composed of abundant, nontoxic elements on earth, and thus low-cost, environment-friendly devices can be realized. However, gas sensing properties of neat CuO were rarely explored and the mechanism still remains unclear. In this work, the neat CuO layers with highly ordered mesoporous structures were prepared by a template-free, one-pot solution-based method using novel ink solutions, formulated with copper formate tetrahydrate, hexylamine and ethyl cellulose. The shear viscosity of the formulated solutions was 5.79 Pa s at a shear rate of 1 s-1. The solutions were coated on SiO2/Si substrates by spin-coating (ink) and calcined for 1 h at the temperature of $200{\sim}600^{\circ}C$ in air. The surface and cross-sectional morphologies of the formed CuO layers were observed by a focused ion beam scanning electron microscopy (FIB-SEM) and porosity was determined by image analysis using simple computer-programming. XRD analysis showed phase evolutions of the layers, depending on the calcination temperature, and thermal decompositions of the neat precursor and the formulated ink were investigated by TGA and DSC. As a result, the formation of the porous structures was attributed to the vaporization of ethyl cellulose contained in the solutions. Mesoporous CuO, formed with the ink solution, consisted of grains and pores with nano-meter size. All of them were strongly dependent on calcination temperature. Sensing properties toward H2 and C2H5OH gases were examined as a function of operating temperature. High and fast responses toward H2 and C2H5OH gases were discussed in terms of crystallinity, nonstoichiometry and morphological factors such as porosity, grain size and surface-to-volume ratio. To our knowledge, the responses toward H2 and C2H5OH gases of these CuO gas sensors are comparable to previously reported values.

  • PDF

Natural Background and Enrichment Characteristics of the Stream Sediments from the Hamyang-Sancheong Area (함양-산청지역 하상퇴적물의 자연배경치 및 부화특성)

  • Park, Young-Seog;Park, Dae-Woo;Kim, Jong-Kyun
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.195-206
    • /
    • 2009
  • We investigated natural background and enrichment characteristics and predicted geochemical disaster for stream sediments in the Hamyang-Sancheong area. Stream sediments samples were collected 95 ea in study area. The stream sediments were well known that had not possibility of contamination effect and represented drainage basins. We got the major and hazardous elements concentrations by XRF, ICP-AES and NAA analysis methods. Acid decomposition for the ICP-AES has been used $HClO_4$ and HF with $200^{\circ}C$ heating at 1st and after that $HClO_4$ HF and HCl with $200^{\circ}C$ heating at 2nd stage. We could know the characteristics that concentration of Cu and Co decreased when concentration of $SiO_2$ increased in correlation analysis. The enrichment factor of the stream sediments was below 2 in study area. This result indicated that study area belonged to moderate enrichment. The stream sediments of Hamyang area were enriched in order of Pb>Th>Cr>V>Co>Cu and those of Sancheong area were enriched in order of Pb>Th>Cr>Co>V>Cu. The enrichment factor(E.F.) of the Pb, Cr, Co and V was similar between Hamyang and Sancheong area. The enrichment factor of the Th was higher in Hamyang area and that of the Cu was higher in Sancheong area. The enrichment factor of the Pb was highly enriched in all study area than earth crust mean. But we could know that study area was not exposed to the pollution of the Pb through the tolerable level.

Effect of Nitrogen concentration on Properties of W-C-N Diffusion Barrier (W-C-N 확산방지막의 질소량에 따른 특성 연구)

  • Kim, S.I.;Kim, S.Y.;Kang, G.B.;Lee, D.H.;Kouh, T.;Kang, J.H.;Lee, C.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.114-115
    • /
    • 2006
  • 반도체 기술이 초고집적화 되어감에 따라 공정에서 선폭이 줄어들고, 박막을 다층으로 제조하는 것이 중요하게 되었다. 이와 같은 제조 공정 하에서는 Si 기판과 금속 박막간의 확산이 커다란 문제로 부각되어 왔다. 특히 Cu는 높은 확산성에 의하여 Si 기판과 접합에서 많은 확산에 의한 문제가 발생하게 되며. 또한 선폭이 줄어듦에 따라 고열이 발생하여 실리콘으로 spiking이 발생하게 된다. 이를 방지하기 위하여 우리는 3개의 화합물로 구성된 Tungsten-Carbon-Nitrogen (W-C-N) 확산방지막을 사용하였다. 실험은 물리적 기상 증착법 (PVD)으로 질소비율을 변화하며 확산방지막을 증착하였고, 이를 여러 온도에서 열처리하여 X-ray Diffraction 분석을 하였다.

  • PDF

Development of Ceramic Pigment using Brass Scrap (각종 황동 Scrap를 사용한 Ceramic 안료 개발)

  • Kim, Jun-Ho;Jeon, Ok-Hyun;Suh, Man-Chul;Lee, Byung-Ha
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.6
    • /
    • pp.197-204
    • /
    • 2007
  • Ceramic pigments were developed by using 4 kinds of Brass scraps. Each Brass scraps were mixed with same weight-ratio of Husk ash, and fine-ground by Rotate ring mill(RRG-120, Armstech industrial. co. Ltd, Korea) after firing at $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. As a result, analysis of particle size of synthetic pigments by particle size analyser, they are $3{\mu}m$ as average. The resulting pigments were characterized by using XRD, FT-IR, SEM Structure of the crystals are Zn2SiO4,, and ZnO, Cu2O, CuO, and cristobalite are existed and particles' shape are plate or needle. As a result of analysis of chemical composition by XRF, synthetic pigments have high SiO2 and CuO content and have SnO2, ZnO and NiO, too. 1wt%, 3wt% and 5wt% pigments were added in each lime glaze, lime-barium glaze and lime-magnesia glaze, and fired at oxidation and reducing atmosphere to figure hue in glazes out. As a result of analysis of color, chroma and brightness by UV, colors of glazes fired at oxidation atmosphere turned into green from sky blue, and colors of glazes fired at reducing atmosphere turned into pink and red.

Homologue Patterns of Polychlorinated Naphthalenes (PCNs) formed via Chlorination in Thermal Process

  • Ryu, Jae-Yong;Kim, Do-Hyong;Mulholland, James A.;Jang, Seong-Ho;Choi, Chang-Yong;Kim, Jong-Bum
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.891-899
    • /
    • 2012
  • The chlorination pattern of naphthalene vapor when passed through a 1 cm particle bed of 0.5% (mass) copper (II) chloride ($CuCl_2$) mixed with silicon dioxide ($SiO_2$) was studied. Gas streams consisting of 92% (molar) $N_2$, 8% $O_2$ and 0.1% naphthalene vapor were introduced to an isothermal flow reactor containing the $CuCl_2/SiO_2$ particle bed. Chlorination of naphthalene was studied from 100 to $400^{\circ}C$ at a gas velocity of 2.7 cm/s. Mono through hexachlorinated naphthalene congeners were observed at $250^{\circ}C$ whereas a broader distribution of polychlorinated naphthalenes (PCNs) including hepta and octachlorinated naphthalenes was observed at $300^{\circ}C$. PCN production was peak at $250^{\circ}C$ with 3.07% (molar) yield, and monochloronaphthalene (MCN) congeners were the major products at two different temperatures. In order to assess the effect of a residence time on naphthalene chlorination, an experiment was also conducted at $300^{\circ}C$ with a gas velocity of 0.32 cm/s. The degree of naphthalene chlorination increased as a gas velocity decreased.

Growth and Annealing Effect of Cu thin Films Using Electroplating Technique (전해도금법을 이용한 구리 박막의 성장 및 열처리 효과)

  • 박병남;강현재;최시영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.10
    • /
    • pp.1-8
    • /
    • 2003
  • Copper thin films were deposited on a Cu/Ta/Si substrate using the electroplating technique. Deposition rate was about 200 nm/min in proportion to current density and in inverse proportion to flow rate. Resistivity of copper thin film was approximately 2.1 ${\mu}$Ωcm and Int$\sub$(111)//Int$\sub$(200)/ ratio of copper film was 5.4 and no significant impurities were detected. After the deposition, electroplating copper films were annealed at various temperatures in a background pressure of 10$\^$-3/ torr. The resistivity of copper thin films were improved by ∼17 % and texture was improved by ∼40 % after annealing at 170$^{\circ}C$. The stress in films was not reduced much after annealing below 170$^{\circ}C$.

Correlation between Mineralogical and Chemical Compositions of the Micro-Textures in Manganese Nodules (망간단괴 미세조직에 따른 광물조성과 화학조성의 상관관계)

  • 최헌수;장세원;이성록
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.205-220
    • /
    • 2000
  • 북동태평양 C-C지역의 우리나라 광구에서 산출되는 망간단괴의 내부조직을 크게 주상조직 층상대, 첨상조직 층상대, 첨상조직 괴상대, 첨상조직 다공질대 및 괴상조직 괴상대로 구분하였다. 주상조직 층상대에서는 버나다이트(vernadite)가 가장 우세하게 산출되며, 첨상조직 층상대에서는 부서라이크(buserite)가 함께 산출된다. 첨상조직 괴상대는 부서라이트의 산출이 두드러지며, 부분적으로 토도로카이트(todorokite)가 수반된다. 첨상조직 다공질대는 첨상체 또는 구상체로 이루어지며 부분적으로 괴상조직으로 교대되는데 주로 토도로카이트와 부서라이트로 구성되어 있다. 괴상조직을 갖는 괴상대에서는 토도로카이트와 버네사이트(birnessite)가 부서라이트와 함께 산출된다. 각 조직대별로 미세조직을 이루는 엽리들에 대해 전자현미분석을 실시하였다. 엽리의 화학조성을 구성하는 요인은 상관계수 군집분석에 의해 Mn-K의 Mn군, Cu-Ni-Zn-Mg(Ca-Na)의 Cu-Ni-Mg군 Fe-Co-Ti(Ca-P)의 Fe군과 Si-Al의 Si군 등 네 개군으로 구분된다. 각 조직대는 세 개 또는 네 개의 군으로 구성되며 이들 각군은 단괴에서 산출되는 광물과 밀접한 관계를 가진다. Mn군은 토도로카이트, Cu-Ni-Mg군은 부서라이트, Fe군은 함코발트수산화철광물, 그리고 Si군은 규산염광물에서 주로 기인하는 것으로 생각된다. 엽리의 화학조성은 이들 광물의 조합과 구성광물의 화학조성에 따라 지배되고 한 조직대내에서도 여러종류의 조합을 보이는데 이는 각 조직대의 엽리들의 성인과 밀접한 관련이 있는 것으로 생각된다.

  • PDF

Formation of Sn-Cu Solder Bump by Electroplating for Flip Chip (플립칩용 Sn-Cu 전해도금 솔더 범프의 형성 연구)

  • 정석원;강경인;정재필;주운홍
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.39-46
    • /
    • 2003
  • Sn-Cu eutectic solder bump was fabricated by electroplating for flip chip and its characteristics were studied. A Si-wafer was used as a substrate and the UBM(Under Bump Metallization) of Al(400 nm)/Cu(300 nm)/Ni(400 nm)/Au(20 nm) was coated sequentially from the substrate to the top by an electron beam evaporator. The experimental results showed that the plating ratio of the Sn-Cu increased from 0.25 to 2.7 $\mu\textrm{m}$/min with the current density of 1 to 8 A/d$\m^2$. In this range of current density the plated Sn-Cu maintains its composition nearly constant level as Sn-0.9∼1.4 wt%/Cu. The solder bump of typical mushroom shape with its stem diameter of 120 $\mu\textrm{m}$ was formed through plating at 5 A/d$\m^2$ for 2 hrs. The mushroom bump changed its shape to the spherical type of 140 $\mu\textrm{m}$ diameter by air reflow at $260^{\circ}C$. The homogeneity of chemical composition for the solder bump was examined, and Sn content in the mushroom bump appears to be uneven. However, the Sn distributed more uniformly through an air reflow.

  • PDF

Electrodeposition of Silicon from Fluorosilicic Acid Produced in Iraqi Phosphate Fertilizer Plant

  • Abbar, Ali H.;Kareem, Sameer H.;Alsaady, Fouad A.
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.168-173
    • /
    • 2011
  • The availability, low toxicity, and high degree of technological development make silicon the most likely material to be used in solar cells, the cost of solar cells depends entirely on cost of high purity silicon production. The present work was conducted to electrodeposite of silicon from $K_2SiF_6$, an inexpensive raw material prepared from fluorosilicic acid ($H_2SiF_6$) produced in Iraqi Fertilizer plants, and using inexpensive graphite material as cathode electrode. The preparation of potassium fluorosilicate was performed at ($60^{\circ}C$) in a three necks flask provided with a stirrer, while the electro deposition was performed at $750^{\circ}C$ in a three-electrodes configuration with melt containing in graphite pot. High purity potassium fluorosilicate (99.25%) was obtained at temperature ($60^{\circ}C$), molar ratio-KCl/$H_2SiF_6$(1.4) and agitation (600 rpm). Spongy compact deposits were obtained for silicon with purity not less than (99.97%) at cathode potential (-0.8 V vs. Pt), $K_2SiF_6$ concentration (14% mole percent) with grain size (130 ${\mu}m$) and level of impurities (Cu, Fe and Ni) less than (0.02%).

Investigation of Ni Silicide formation at Ni/Cu/Ag Contact for Low Cost of High Efficiency Solar Cell (고효율 태양전지의 저가화를 위한 Ni/Cu/Ag 전극의 Ni Silicide 형성에 관한 연구)

  • Kim, Jong-Min;Cho, Kyeong-Yeon;Lee, Ji-Hun;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.230-234
    • /
    • 2009
  • It is significant technique to increase competitiveness that solar cells have a high energy conversion efficiency and cost effectiveness. When making high efficiency crystalline Si solar cells, evaporated Ti/Pd/Ag contact system is widely used in order to reduce the electrical resistance of the contact fingers. However, the evaporation process is no applicable to mass production because high vacuum is needed. Furthermore, those metals are too expensive to be applied for terrestrial applications. Ni/Cu/Ag contact system of silicon solar cells offers a relatively inexpensive method of making electrical contact. Ni silicide formation is one of the indispensable techniques for Ni/Cu/Ag contact sytem. Ni was electroless plated on the front grid pattern, After Ni electroless plating, the cells were annealed by RTP(Rapid Thermal Process). Ni silicide(NiSi) has certain advantages over Ti silicide($TiSi_2$), lower temperature anneal, one step anneal, low resistivity, low silicon consumption, low film stress, absence of reaction between the annealing ambient. Ni/Cu/Ag metallization scheme is an important process in the direction of cost reduction for solar cells of high efficiency. In this article we shall report an investigation of rapid thermal silicidation of nickel on silngle crystalline silicon wafers in the annealing range of $350-390^{\circ}C$. The samples annealed at temperatures from 350 to $390^{\circ}C$ have been analyzed by SEM(Scanning Electron Microscopy).

  • PDF