Browse > Article
http://dx.doi.org/10.5322/JES.2012.21.8.891

Homologue Patterns of Polychlorinated Naphthalenes (PCNs) formed via Chlorination in Thermal Process  

Ryu, Jae-Yong (Division for Industrial & Environmental Research, Korea Atomic Energy Research Institute (KAERI))
Kim, Do-Hyong (Land Protection Branch, Georgia Environmental Protection Division)
Mulholland, James A. (School of Civil and Environmental Engineering, Georgia Institute of Technology)
Jang, Seong-Ho (Department of Bioenvironmental Energy, Pusan National University)
Choi, Chang-Yong (Division for Industrial & Environmental Research, Korea Atomic Energy Research Institute (KAERI))
Kim, Jong-Bum (Division for Industrial & Environmental Research, Korea Atomic Energy Research Institute (KAERI))
Publication Information
Journal of Environmental Science International / v.21, no.8, 2012 , pp. 891-899 More about this Journal
Abstract
The chlorination pattern of naphthalene vapor when passed through a 1 cm particle bed of 0.5% (mass) copper (II) chloride ($CuCl_2$) mixed with silicon dioxide ($SiO_2$) was studied. Gas streams consisting of 92% (molar) $N_2$, 8% $O_2$ and 0.1% naphthalene vapor were introduced to an isothermal flow reactor containing the $CuCl_2/SiO_2$ particle bed. Chlorination of naphthalene was studied from 100 to $400^{\circ}C$ at a gas velocity of 2.7 cm/s. Mono through hexachlorinated naphthalene congeners were observed at $250^{\circ}C$ whereas a broader distribution of polychlorinated naphthalenes (PCNs) including hepta and octachlorinated naphthalenes was observed at $300^{\circ}C$. PCN production was peak at $250^{\circ}C$ with 3.07% (molar) yield, and monochloronaphthalene (MCN) congeners were the major products at two different temperatures. In order to assess the effect of a residence time on naphthalene chlorination, an experiment was also conducted at $300^{\circ}C$ with a gas velocity of 0.32 cm/s. The degree of naphthalene chlorination increased as a gas velocity decreased.
Keywords
PCN (polychlorinated naphthalene); Chlorination; Copper (II) chloride; Homologue distribution;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Marinov, N. M., Castaldi, M. J., Melius, C. F., Tsang, W., 1997, Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Premixed Propane Flame, Combust. Sci. Technol., 128, 295-342.   DOI   ScienceOn
2 McEnally, C.S. and Pfefferle, L. D., 2000, The use of carbon-13-labeled fuel dopants for identifying naphthalene formation pathways in non-premixed flames, Proc. Combust. Inst., 28, 2569-2576.   DOI   ScienceOn
3 Melius, C. F., Colvin, M. E., Marinov, N. M., Pitz, W. J., Senkan, S. M., 1996, Reaction mechanisms in aromatic hydrocarbon formation involving the $C_5H_5$ cyclopentadienyl moiety, Proc. Combust. Inst., 26, 685-692.
4 Ryu, J. Y., Kim, D. H., Choi, K. C., Suh, J. M., 2006, Polychlorinated naphthalene(PCN) and dibenzofuran (PCDF) congener patterns from phenol precursors in thermal process: [I] a priori hypothesis of PCN and PCDF formation pathways from monochlorophenols, Environ. Eng. Res., 11(4), 218-232.
5 Ryu, J. Y., Kim, D. H., Choi, K. C., Suh, J. M., 2006, Polychlorinated naphthalene(PCN) and dibenzofuran (PCDF) congener patterns from phenol precursors in thermal process: [II] experimental results from dichlorophenols (DCPs), Environ. Eng. Res., 11(4), 233-241.
6 Ryu, J. Y., Mulholland, J. A., Chu, B., 2003, Chlorination of dibenzo-p-dioxin and dibenzofuran vapor by $CuCl_2$, Chemosphere, 51, 1031-1039.   DOI
7 Ryu, J. Y., Mulholland, J. A., Dunn, J. E., Iino, F., Gullett, B. K., 2004, Potential Role of Chlorination Pathways in PCDD/F Formation in a Municipal Waste Incinerator, Environ. Sci. Technol., 38, 5112-5119.   DOI
8 Frenklach, M., Clary, D. W., Cardiner, W. C. and Stein, S. E., 1984, Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene, Proc. Combust. Inst., 20, 887-901.
9 Hoffman, R. V., Eiceman, G. A., Long, Y. T., Margaret, C. C., Lu, M. Q., 1990, Mechanism of chlorination of aromatic compounds adsorbed on the surface of fly ash from municipal incinerators, Environ. Sci. Technol., 24, 1635-1641   DOI
10 Iino, F., Imagawa, T., Takeuchi, M., Sadakata, M., 1999, De Novo synthesis mechanism of polychlorinated dibenzofurans from polycyclic aromatic hydrocarbons, Environ. Sci. Technol., 33, 1038-1043.   DOI
11 Imagawa, T., Takeuchi, M., 1995, Relation between isomer compositions of polychlorinated naphthalens and congener compositions of PCDDs/PCDFs from incinerators, Organohalogen Compounds, 23, 487-490.
12 Jansson, S., Fick, J., Marklund, S., 2008, Formation and chlorination of polychlorinated naphthalenes (PCNs) in the post-combustion zone during MSW combustion, Chemosphere, 72, 1138-1144.   DOI
13 Jarnberg, U., Asplund, C., Jakobsson, E., 1994, Gas chromatographic retention of polychlorinated naphthalenes on non-polar, polarizable, polar and semectic capillary columns, J. Chromat., 683A, 385-396.
14 Kim, D. H., Kim, J. K., Jang, S. H., Mulholland, J. A., Ryu, J. Y., 2007, Thermal formation of polycyclic aromatic hydrocarbons from cyclopentadiene (CPD), Environ. Eng. Res., 12(5), 211-217.   DOI
15 Kim, D. H., Mulholland, J. A., Ryu, J, Y., 2007, Chlorinated naphthalene formation from the oxidation of dichlorophenols, Chemosphere 67, S135-S143.   DOI
16 Kim, D. H., Mulholland, J. A., Ryu, J. Y., 2005, Formation of polychlorinated naphthalenes from chlorophenols, Proc. Combust. Inst., 30, 1249-1257.
17 Falandysz, J., 1998, Polychlorinated naphthalenes: an environmental update, Environmental Pollution 101(1), 77-90.   DOI
18 Abad, E., Caixach, J., Rivera, J., 1999, Dioxin like compounds from municipal waste incinerator emissions: assessment of the presence of polychlorinated naphthalenes, Chemosphere, 38, 109-120.   DOI
19 Akki, U., Mulholland, J. A., 1997, Gas-phase formation of dioxin and other aromatic products from 2,6-dichlorophenol pyrolysis, Organohalogen Compounds, 31, 475-479.
20 Castaldi, M. J., Marinov, N. M., Melius, C. F., Huang, J., Senken, S. M., Pitz, W. J., Westbrook, C. K., 1996, Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame, Proc. Combust. Inst., 26, 693-702.
21 Frenkalch, M and Warnatz, J., 1987, Detailed modeling of PAH profiles in a sooting low-pressure acetylene flame, Combust. Sci. Technol., 51, 265-283.   DOI
22 Manion, J., Louw, R., 1989, Rates, products, and mechanisms in the gas-phase hydrogenolysis of phenol between 922 and 1175 K, J. Phys. Chem., 93, 3563-3574.   DOI
23 Ryu, J. Y., Mulholland, J. A., Takeuchi, M., Kim, D. H., 2005, Homologue and Isomer Patterns of Polychlorinated Dibenzo-p-dioxin (PCDD) and Dibenzofuran (PCDF) from Phenol Precursors: Comparison with Municipal Waste Incinerator Data, Environ. Sci. Technol., 39, 4398-4406.   DOI
24 Sakai, S., Hiraoka, M., Takeda, N. and Shiozaki, K., 1996, Behavior of coplanar PCNs and PCNs in oxidative conditions of municipal waste incineration, Chemosphere, 32, 79-88.   DOI
25 Schneider, M., Stieglitz, L., Will, R., Zwick, G., 1998, Formation of polychlorinated naphthalenes on fly ash, Chemosphere, 37, 2055-2070.   DOI
26 Stieglitz, L., Vogg, H., Zwick, G., Beckj, J., Bautz, H., 1990, On formation conditions of organohalogen compounds from particulate carbon of fly ash, Chemosphere., 23,1255-1264.
27 Yang, Y., Mulholland, J. A., Akki, U., 1998, Formation of furans by gas-phase reactions of chlorophenols, Proc. Combust. Inst., 27, 1761-1768.