• Title/Summary/Keyword: C/C-SiC-Cu

Search Result 540, Processing Time 0.02 seconds

The Influence of a Second Metal on the Ni/SiC Catalyst for the Methanation of Syngas

  • Song, Lanlan;Yu, Yue;Wang, Xiaoxiao;Jin, Guoqiang;Wang, Yingyong;Guo, XiangYun
    • Korean Chemical Engineering Research
    • /
    • 제52권5호
    • /
    • pp.678-687
    • /
    • 2014
  • The catalytic performance of silicon carbide supported nickel catalysts modified with or without second metal (Co, Cu and Zn) for the methanation of CO has been investigated in a fixed-bed reactor using a feed consisting of 25% CO and 75% $H_2$ without any diluent gas. It has been found that the introduction of Co species can clearly improve the catalytic activity of Ni/SiC catalyst, whereas the addition of Cu or Zn can result in a significant decrease in the catalytic activity. The characterizations by means of XRD, TEM, XPS, CO-TPD and $H_2$-TPR indicate that the addition of Co could decrease the particle size of active metal, increase active sites on the surface of methanation catalyst, improve the chemisorption of CO and enhance the reducibility of methanation catalysts. Additionally, the special interaction between Co species and Ni species is likely favorable for the dissociation of adsorbed CO on the surface of catalyst, and this may also contribute to the high activity of 5Co-Ni/SiC catalyst for CO methanation reaction. For 5Cu-Ni/SiC catalyst and 5Zn-Ni/SiC catalyst, Cu and Zn species could cover partial nickel particles and decrease the chemisorption amount of CO. These could be responsible for the low methanation activity. In addition, a 150h stability test under 2 MPa and $300^{\circ}C$ showed that 5Co-Ni/SiC catalyst was very stable for CO methanation reaction.

Iron Aluminide-$SiC_p$ 혼합 예비성형체를 사용한 Al합금기 복합재료의 내마모 특성 (Wear Resistance of Al Alloy Matrix Composites Using Porous Iron Aluminide-$SiC_p$ Preforms)

  • 차재상;오선훈;최답천
    • 한국주조공학회지
    • /
    • 제23권1호
    • /
    • pp.30-39
    • /
    • 2003
  • Porous hybrid preforms were fabricated by reactive sintering using the compacts consisting of SiC particles, Fe and Al powders. Squeeze casting processing was employed to produce the composite in which the matrix phase is Al-Si7Mg. The microstructural change and wear resistance of the composites were investigated in terms of an amount of SiC particles. The wear loss was increased with increasing the contact pressure in the alloy containing SiC particles coated with Cu. The most drastic change was found to the specimen tested at 2.5 MPa of contact pressure. Concerning the alloys containing SiC particles coated with Ni-P, a drastic increase in the wear loss exhibited at 2 MPa of contact pressure in those alloys containing 4 and 8 wt. % of SiC particles coated with Ni-P. In the alloy containing 16 wt. % a proportional increase in wear loss was observed to the change of contact pressure. With respecting to the sliding velocity, the wear loss of the alloy containing SiC particles coated with Cu increased at the initial stage of wear process and then decreased. Similar result was found in the alloys containing SiC particles coated with Ni-P. On the basis of the present results obtained, it was found that wear resistance of the alloys tested was improved to show in the order of the alloy reinforced by coated SiC particles > by uncoated SiC particles > by intermetallic compound without SiC particles.

Mo 하지층의 첨가원소(Ti) 농도에 따른 Cu 박막의 특성 (Characteristic of Copper Films on Molybdenum Substrate by Addition of Titanium in an Advanced Metallization Process)

  • 홍태기;이재갑
    • 한국재료학회지
    • /
    • 제17권9호
    • /
    • pp.484-488
    • /
    • 2007
  • Mo(Ti) alloy and pure Cu thin films were subsequently deposited on $SiO_2-coated$ Si wafers, resulting in $Cu/Mo(Ti)/SiO_2$ structures. The multi-structures have been annealed in vacuum at $100-600^{\circ}C$ for 30 min to investigate the outdiffusion of Ti to Cu surface. Annealing at high temperature allowed the outdiffusion of Ti from the Mo(Ti) alloy underlayer to the Cu surface and then forming $TiO_2$ on the surface, which protected the Cu surface against $SiH_4+NH_3$ plasma during the deposition of $Si_3N_4$ on Cu. The formation of $TiO_2$ layer on the Cu surface was a strong function of annealing temperature and Ti concentration in Mo(Ti) underlayer. Significant outdiffusion of Ti started to occur at $400^{\circ}C$ when the Ti concentration in Mo(Ti) alloy was higher than 60 at.%. This resulted in the formation of $TiO_2/Cu/Mo(Ti)\;alloy/SiO_2$ structures. We have employed the as-deposited Cu/Mo(Ti) alloy and the $500^{\circ}C-annealed$ Cu/Mo(Ti) alloy as gate electrodes to fabricate TFT devices, and then measured the electrical characteristics. The $500^{\circ}C$ annealed Cu/Mo($Ti{\geq}60at.%$) gate electrode TFT showed the excellent electrical characteristics ($mobility\;=\;0.488\;-\;0.505\;cm^2/Vs$, on/off $ratio\;=\;2{\times}10^5-1.85{\times}10^6$, subthreshold = 0.733.1.13 V/decade), indicating that the use of Ti-rich($Ti{\geq}60at.%$) alloy underlayer effectively passivated the Cu surface as a result of the formation of $TiO_2$ on the Cu grain boundaries.

직조된 SiC 섬유에 무전해 구리도금 시 도금 조건의 영향 (Effect of Plating Conditions on Electroless Copper Plating on SiC Fabric)

  • 이기환;손유한;한태양;이경진;김혜성;한준현
    • 한국표면공학회지
    • /
    • 제50권4호
    • /
    • pp.244-250
    • /
    • 2017
  • Effects of plating conditions (dispersant concentration, plating time, and ultrasonication) on electroless Cu plating on SiC fabric woven by crossing of SiC continuous fibers vertically were studied. The ultrasonic dispersion treatment not only did not improve the dispersion of the SiC fibers, but also did not change the plating thickness. The ultrasonication in the pretreatment step of electroless plating did not improve the dispersion of the fibers, while the ultrasonication in the plating step enhanced the dispersion of the fibers and decreased the thickness of the Cu films. It was possible to control the thickness of the Cu coating layer as well as the dispersion of the fibers in the fabric by changing the plating conditions such as dispersant concentration, plating time, and ultrasonication, but it was very difficult to coat copper on the intersection of vertical fibers in the fabric.

Sputter Seeding을 이용한 CVD Cu 박막의 비선택적 증착 및 기판의 영향 (The Blanket Deposition and the Sputter Seeding Effects on Substrates of the Chemically Vapor Deposited Cu Films)

  • 박종만;김석;최두진;고대홍
    • 한국세라믹학회지
    • /
    • 제35권8호
    • /
    • pp.827-835
    • /
    • 1998
  • Blanket Copper films were chemically vapor deposited on six kinds for substrates for scrutinizing the change of characteristics induced by the difference of substrates and seeding layers. Both TiN/Si and {{{{ { SiO}_{2 } }}/Si wafers were used as-recevied and with the Cu-seeding layers of 40${\AA}$ and 160${\AA}$ which were produced by sputtering The CVD processes were exectued at the deposition temperatures between 130$^{\circ}C$ and 260$^{\circ}C$ us-ing (hfc)Cu(VTMS) as a precursor. The deposition rate of 40$^{\circ}C$ Cu-seeded substrates was higher than that of other substrates and especially in seeded {{{{ { SiO}_{2 } }}/Si substrate because of the incubation period reducing in-duced by seeding layer at the same deposition time and temperature. The resistivity of 160${\AA}$ Cu seeded substrate was lower then that of 40 ${\AA}$ because the nucleation and growth behavior in Cu-island is different from the behavior in {{{{ { SiO}_{2 } }} substrate due to the dielectricity of {{{{ { SiO}_{2 } }}.

  • PDF

Cu/Ti-cappng/NiSi 전극구조 p+/n 접합의 전기적 특성 (Electrical Characteristics of p+/n Junctions with Cu/Ti-capping/NiSi Electrode)

  • 이근우;김주연;배규식
    • 한국재료학회지
    • /
    • 제15권5호
    • /
    • pp.318-322
    • /
    • 2005
  • Ti-capped NiSi contacts were formed on $p^+/n$ junctions to improve the leakage problem and then Cu was deposited without removing the Ti-capping layer in an attempt to utilize as a diffusion barrier. The electrical characteristics of these $p^+/n$ diodes with Cu/Ti/NiSi electrodes were measured as a function of drive-in RTA(rapid-thermal annealing) and silicidation temperature and time. When drive-in annealed at $900^{\circ}C$, 10 sec. and silicided at $500^{\circ}C$, 100 sec., the diodes showed the most excellent I-V characteristics. Especially, the leakage current was $10^{-10}A$, much lower than reported data for diodes with NiSi contacts. However, when the $p^+/n$ diodes with Cu/Ti/NiSi contacts were furnace-annealed at $400^{\circ}C$ for 40 min., the leakage current increased by 4 orders. The FESEM and AES analysis revealed that the Ti-capping layer effectively prohibited the Cu diffusion, but was ineffective against the NiSi dissociation and consequent Ni diffusion.

전해도금법으로 증착한 Cu-Sn 합금막의 배선특성에 관한 연구 (A Study on the Metallization Properties of Cu-Sn Alloy Layers Deposited by the Electroplating Method)

  • 김주연;배규식
    • 한국재료학회지
    • /
    • 제12권3호
    • /
    • pp.225-230
    • /
    • 2002
  • Sn was selected as an alloying element of Cu. The Cu-Sn thin layers were deposited on the Si substrates by the electroplating method and their properties were studied. By rapidly thermal annealing(RTA) up to 40$0^{\circ}C$ after electroplating, sheet resistance decreased and adhesion strength increased, but that trend was reversed at the 50$0^{\circ}C$ RTA. Cu-Sn particles grew dense and the surface was uniform up to 40$0^{\circ}C$, but at 50$0^{\circ}C$, empty area was introduced and the surface became rough owing to oxidation and particle coarsening and agglomeration. Deposited layer contained significant amount of Si, while pure Cu-Sn layer with the composition ratio of 90:10 was present only on the top surface. However, no significant change in the Cu composition within alloy layers occured by the RTA regardless of its temperature. This indicates that the Cu diffusion into the Si was suppressed by the presence of Sn.

Squeeze Casting법에 의해 제조된 A356/coated SiC복합재료의 미세조직과 기계적 특성에 관한 연구 (A Study on Microstructures and Mechanical Properties of A356/coated SiC Composites Fabricated by Squeeze Casting)

  • 이경구;이도재
    • 한국주조공학회지
    • /
    • 제14권5호
    • /
    • pp.429-437
    • /
    • 1994
  • Influence of interfacial structure between matrix and particle in A356/coated SiC composite fabricated by squeeze casting method was studied. Experimental variables are types of coated metallic film on SiC particles such as Cu, Ni-P, and applied pressure for squeeze casting. It was found that coating treatment on SiC particles improves the wetting of liquid A356 alloy on SiC particles. SiC particle distribution is very homogeneous in A356 matrix alloy which is fabricated by squeeze casting. Analysing the surface morphology of fractured A356/coated SiC, it was concluded that metallic thin film by coating treatment on SiC particle improves the interfacial bonding between particle and matrix, and so does on mechanical properties such as tensile strength. However, there was on significant difference in hardness between those composite made of as-received SiC particle and coated SiC particle.

  • PDF

Al-$SiC_f$ 복합재료에서 보강재의 coating처리가 젖음성에 미치는 영향 (A Study on Wetting Behaviors of Al-Coated $SiC_f$ Composite)

  • 김균영;이경구;최답천;이도재
    • 한국주조공학회지
    • /
    • 제14권3호
    • /
    • pp.274-284
    • /
    • 1994
  • SiC fibers were coated with Cu, Ag and Ni metallic thin films by magnetron sputtering in order to improve wetting properties between Al matrix and SiC fiber. The wetting behavior of metal coated SiC fiber by pure Al has been studied at $670^{\circ}C{\sim}900^{\circ}C$ range for $10{\sim}90min$. under vacuum atmosphere. Besides, the effect of coated film thickness on the wettability has been investigated. The wetting behavior and interfacial reaction between Al and SiC fibers were analysed with optical microscope and SEM (scanning electron microscope). The wetting behavior of the as-received SiC fiber with Al melt was not uniform, indicated by the contact angles from less than $90^{\circ} to more Al melt was appeared in the initial stage of reation. It was considered that the metallic thin film played an important role in reducing the interfacial free energy and breaking down the aluminum oxide film by eutectic reaction with Al melt. However the wettability of Ni coated SiC fiber was not improved as much as that of Cu or Ag coated SiC fiber. The improvement of wettability by coating thickness is clearly showed in $1{\mu}m$ coated SiC fiber compared with $0.25{\mu}m$ coated SiC.

  • PDF

Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구 (Mechanism of Crack Formation in Pulse Nd:YAG Laser Spot Welding of Al Alloys)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.86-94
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7N01 spot-welded by pulse Nd : YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed : center line crack({TEX}$C_{C}${/TEX}), diagonal crack({TEX}$C_{D}${/TEX}), and U shape crack({TEX}$C_{U}${/TEX}). Also, HAZ crack({TEX}$C_{H}${/TEX}) was observed in the HAZ region, furthermore, mixing crack({TEX}$C_{M}${/TEX}) consisting of diagonal crack and HAZ crack was observed. White film was formed at th hot crack region in the fractured surface after it was immersed to 10% NaOH water. In the case of A5083 alloy, white films in {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack region were composed of low melting phases, {TEX}$Fe_{2}SiAl_{8}${/TEX} and eutectic phases, $Mg_2$Al$_3$ and $Mg_2$Si. Such films observed $CuAl_2$, {TEX}$Mg_{32}(Al,Zn)_{3}${/TEX}, MgZn$_2$, $Al_2$CuMg and $Mg_2$Si were observed in the whitely etched films near {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Sim in the case of A7N01 alloy, respectively. The {TEX}$C_{C}${/TEX} and {TEX}$C_{D}${/TEX} cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of {TEX}$C_{M}${/TEX} crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The {TEX}$C_{U}${/TEX} crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification.

  • PDF