Browse > Article
http://dx.doi.org/10.3740/MRSK.2007.17.9.484

Characteristic of Copper Films on Molybdenum Substrate by Addition of Titanium in an Advanced Metallization Process  

Hong, Tae-Ki (School of Advanced Materials Engineering, Kookmin University)
Lee, Jea-Gab (School of Advanced Materials Engineering, Kookmin University)
Publication Information
Korean Journal of Materials Research / v.17, no.9, 2007 , pp. 484-488 More about this Journal
Abstract
Mo(Ti) alloy and pure Cu thin films were subsequently deposited on $SiO_2-coated$ Si wafers, resulting in $Cu/Mo(Ti)/SiO_2$ structures. The multi-structures have been annealed in vacuum at $100-600^{\circ}C$ for 30 min to investigate the outdiffusion of Ti to Cu surface. Annealing at high temperature allowed the outdiffusion of Ti from the Mo(Ti) alloy underlayer to the Cu surface and then forming $TiO_2$ on the surface, which protected the Cu surface against $SiH_4+NH_3$ plasma during the deposition of $Si_3N_4$ on Cu. The formation of $TiO_2$ layer on the Cu surface was a strong function of annealing temperature and Ti concentration in Mo(Ti) underlayer. Significant outdiffusion of Ti started to occur at $400^{\circ}C$ when the Ti concentration in Mo(Ti) alloy was higher than 60 at.%. This resulted in the formation of $TiO_2/Cu/Mo(Ti)\;alloy/SiO_2$ structures. We have employed the as-deposited Cu/Mo(Ti) alloy and the $500^{\circ}C-annealed$ Cu/Mo(Ti) alloy as gate electrodes to fabricate TFT devices, and then measured the electrical characteristics. The $500^{\circ}C$ annealed Cu/Mo($Ti{\geq}60at.%$) gate electrode TFT showed the excellent electrical characteristics ($mobility\;=\;0.488\;-\;0.505\;cm^2/Vs$, on/off $ratio\;=\;2{\times}10^5-1.85{\times}10^6$, subthreshold = 0.733.1.13 V/decade), indicating that the use of Ti-rich($Ti{\geq}60at.%$) alloy underlayer effectively passivated the Cu surface as a result of the formation of $TiO_2$ on the Cu grain boundaries.
Keywords
Cu; Mo(Ti) alloy; Metallization; Out-diffusion; TFT-LCDs;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 E. G. Colgan, P. M. Fryer, E. Galligan, W. Graham, R. Horton, D. Hunt, L. Jenkins, R. John, P. Koke, Y. Kuo. K. Latzko, J. Libsch, A. Lien, K. Lovas, R. Nywening, R. Polastre, M. E. Rothwell, J. Wilson, R. Wisnieff and S. L. Wright, Proc. of IDW' 03 (Kobe), P. 29. (1996)
2 A. Awaya and Y. Arita, J. Electron. Mater., 21, 959 (1992)   DOI
3 Y. J. Park, V. K. Andleigh and C. V. Thompson, J. Appl. Phys., 85, 3546 (1999)   DOI   ScienceOn
4 O. Aubel, E. Bugiel, D. Kruger, W. Hasse and M. Hommel, Microelectronics Reliability, 46, 768 (2006)   DOI   ScienceOn
5 C. Cabral, Jr., J. M. E. Harper, K. Holloway, D. A. Smith, and R. G. Schad, J. Vac. Sci. Technol., A 10, 1706 (1992)   DOI
6 S. J. Hong, S. Lee, H. J. Yang, H. M. Lee, Y. K. Ko, H. N. Hong, H. S. Soh, C. K. Kim, C. S. Yoon, K. S. Ban and J. G. Lee, Semicond. Sci. Technol., 19, 1315 (2004)   DOI   ScienceOn
7 W. H. Lee, Y. K. Ko, J. H. Jang, C. S. Kim, P. J. Reucroft, and J. G. Lee, J. Electron. Mater., 30, 1042 (2001)   DOI
8 K. Barmak, G. A. Lucadamo, C. Cabral, Jr., C. Lavoie, and J. M. E. Harper, J. Appl. Phys., 87, 2204 (2000)   DOI   ScienceOn
9 S.-L. Zhang, J.M.E. Harper, and F.M. d'Heurle, J. Electron, Mater., 30, 59 (2001)   DOI
10 A. Isobayashi, Y. Enomoto, H. Yamada, S. Takahashi and S. Kadomura, Proceedings of the 2004 International Electron Device Meeting, IEDM, San Francisco, CA, Dec 13-15, p. 953. (2004)   DOI
11 J. M. E. Harper, J. Gupta, D. A. Smith, J. W. Chang, K. L. Holloway, C. Cabral, Jr., D. P. Tracy and D. B. Knorr, Appl. Phys. Lett., 65, 177 (1994)   DOI   ScienceOn
12 H. Itow, Y. Nakasaki, G. Minamihaba, K. Suguro and H. Okano, Appl. Phys. Lett., 63(7), 934 (1993)   DOI   ScienceOn