DOI QR코드

DOI QR Code

The Influence of a Second Metal on the Ni/SiC Catalyst for the Methanation of Syngas

  • Song, Lanlan (State Key Laboratory of Coal Conversion, Institute of Coal Chemistry) ;
  • Yu, Yue (Lin Yi Academy of Technology Cooperation and Application) ;
  • Wang, Xiaoxiao (Taiyuan University of Science and Technology) ;
  • Jin, Guoqiang (State Key Laboratory of Coal Conversion, Institute of Coal Chemistry) ;
  • Wang, Yingyong (State Key Laboratory of Coal Conversion, Institute of Coal Chemistry) ;
  • Guo, XiangYun (State Key Laboratory of Coal Conversion, Institute of Coal Chemistry)
  • Received : 2014.02.26
  • Accepted : 2014.04.02
  • Published : 2014.10.01

Abstract

The catalytic performance of silicon carbide supported nickel catalysts modified with or without second metal (Co, Cu and Zn) for the methanation of CO has been investigated in a fixed-bed reactor using a feed consisting of 25% CO and 75% $H_2$ without any diluent gas. It has been found that the introduction of Co species can clearly improve the catalytic activity of Ni/SiC catalyst, whereas the addition of Cu or Zn can result in a significant decrease in the catalytic activity. The characterizations by means of XRD, TEM, XPS, CO-TPD and $H_2$-TPR indicate that the addition of Co could decrease the particle size of active metal, increase active sites on the surface of methanation catalyst, improve the chemisorption of CO and enhance the reducibility of methanation catalysts. Additionally, the special interaction between Co species and Ni species is likely favorable for the dissociation of adsorbed CO on the surface of catalyst, and this may also contribute to the high activity of 5Co-Ni/SiC catalyst for CO methanation reaction. For 5Cu-Ni/SiC catalyst and 5Zn-Ni/SiC catalyst, Cu and Zn species could cover partial nickel particles and decrease the chemisorption amount of CO. These could be responsible for the low methanation activity. In addition, a 150h stability test under 2 MPa and $300^{\circ}C$ showed that 5Co-Ni/SiC catalyst was very stable for CO methanation reaction.

Keywords

References

  1. Kustov, A. L., Frey, A. M., Larsen, K. E., Johannessen, T., Norskov, J. K. and Christensen, C. H., "CO Methanation over Supported Bimetallic Ni-Fe Catalysts: From Computational Studies Towards Catalyst Optimization," Appl. Catal. A, 320, 98-104(2007). https://doi.org/10.1016/j.apcata.2006.12.017
  2. Kopyscinski, J., Schildhauer, T. J. and Biollaz, S. M. A., "Production of Synthetic Natural Gas (SNG) from Coal and Dry Biomass - A Technology Review from 1950 to 2009," Fuel, 89, 1763-1783(2010). https://doi.org/10.1016/j.fuel.2010.01.027
  3. Rostrup-Nielsen, J. R., Pedersen, K. and Sehested, J., "High Temperature Methanation: Sintering and Structure Sensitivity," Appl. Catal. A: Gen., 330, 134-138(2007). https://doi.org/10.1016/j.apcata.2007.07.015
  4. Vitasari, C. R., Jurascik, M. and Ptasinski, K. J., "Exergy Analysis of Biomass-to-synthetic Natural Gas (SNG) Process via Indirect Gasification of Various Biomass Feedstock," Energy, 36, 3825-3837(2011). https://doi.org/10.1016/j.energy.2010.09.026
  5. Liu, Z. H., Chu, B. Z., Zhai, X. L., Jin, Y. and Cheng, Y., "Total Methanation of Syngas to Synthetic Natural Gas over Ni Catalyst in a Micro-channel Reactor," Fuel, 95, 599-605(2012). https://doi.org/10.1016/j.fuel.2011.12.045
  6. Meijden, C. M. V. D., Veringa, H. J. and Rabou, L. P. L. M., "The Production of Synthetic Natural Gas (SNG): A Comparison of Three Wood Gasification Systems for Energy Balance and Overall Efficiency," Biomass Bioenergy, 34, 302-311(2010). https://doi.org/10.1016/j.biombioe.2009.11.001
  7. Grobl, T., Walter, H. and Haider, M., "Biomass Steam Gasification for Production of SNG - Process Design and Sensitivity Analysis," Applied Energy, 97, 451-461(2012). https://doi.org/10.1016/j.apenergy.2012.01.038
  8. Wirth, S. and Markard, J., "Context Matters: How Existing Sectors and Competing Technologies Affect the Prospects of the Swiss Bio-SNG Innovation System," Technological Forecasting and Social Change, 78, 635-649(2011). https://doi.org/10.1016/j.techfore.2011.01.001
  9. Shen, W. J., Okumura, M., Matsumural, Y. and Haruta, M., "The Influence of the Support on the Activity and Selectivity of Pd in CO Hydrogenation," Appl. Catal. A: Gen., 213, 225-232(2001). https://doi.org/10.1016/S0926-860X(01)00465-3
  10. Takenaka, S., Shimizu, T. and Otsuka, K., "Complete Removal of Carbon Monoxide in Hydrogen-rich Gas Stream Through Methanation over Supported Metal Catalysts," Int. J. Hydrogen Energy 29, 1065-1073(2004). https://doi.org/10.1016/j.ijhydene.2003.10.009
  11. Panagiotopoulou, P., Kondarides, D. I. and Verykios, X. E., "Selective Methanation of CO over Supported Noble Metal Catalysts: Effects of the Nature of the Metallic Phase on Catalytic Performance," Appl. Catal. A: Gen., 344, 45-54(2008). https://doi.org/10.1016/j.apcata.2008.03.039
  12. Panagiotopoulou, P., Kondarides, D. I. and Verykios, X. E., "Selective Methanation of CO over Supported Ru Catalysts," Appl. Catal. B: Environ., 88, 470-478(2009). https://doi.org/10.1016/j.apcatb.2008.10.012
  13. Kowalczyk, Z., Stolecki, K., Rarog-Pilecka, W., Miskiewicz, E., Wilczkowska, E. and Karpinski, Z., "Supported Ruthenium Catalysts for Selective Methanation of Carbon Oxides at Very Low $CO_x$/$H_2$ Ratios," Appl. Catal. A: Gen., 342, 35-39(2008). https://doi.org/10.1016/j.apcata.2007.12.040
  14. Utaka, T., Takeguchi, T., Kikuchi, R. and Eguchi, K., "CO Removal from Reformed Fuels over Cu and Precious Metal Catalysts," Appl. Catal. A: Gen., 246, 117-124(2003). https://doi.org/10.1016/S0926-860X(03)00048-6
  15. Tsai, Y. T., Mo, X. H. and Goodwin Jr, J. G., "The Synthesis of Hydrocarbons and Oxygenates During CO Hydrogenation on CoCuZnO Catalysts: Analysis at the Site Level Using Multiproduct SSITKA," J. Catal., 285, 242-250(2012). https://doi.org/10.1016/j.jcat.2011.09.038
  16. Sabatier, P. and Senderens, J. B., "New Synthesis of Methane," Acad. Sci., 134, 514-516(1902).
  17. Morl, T., Masuda, H. and Imal, H., "Kinetics, Isotope Effects, and Mechanism for the Hydrogenation of Carbon Monoxide on Supported Nickel Catalysts," J. Phys. Chem., 86, 2753-2760(1982). https://doi.org/10.1021/j100211a039
  18. Fujitani, S.-I., Takezawa, N., Uchijima, T. and Nakamura, J., "Methanol Synthesis by Hydrogenation of $CO_2$ over a Zn-deposited Cu(111): Formate Intermediate," Chem. Eng. J., 68, 63-38(1997). https://doi.org/10.1016/S1385-8947(97)00074-0
  19. Mo, X. H., Gao, J. and Goodwin Jr, J. G., " Effect of Component Interaction on the Activity of Co/CuZnO for CO Hydrogenation," Catalysis, 285, 208-215(2012). https://doi.org/10.1016/j.jcat.2011.09.033
  20. Znak, L., Stolecki, K. and Zielinski, J., "The Effect of Cerium, Lanthanum and Zirconium on Nickel/alumina Catalysts for the Hydrogenation of Carbon Oxides," Catal. Today, 101, 65-71(2005). https://doi.org/10.1016/j.cattod.2005.01.003
  21. Hu, X. and Lu, G. X., "Inhibition of Methane Formation in Steam Reforming Reactions Through Modification of Ni Catalyst and the Reactants," Green Chem., 11, 724-732(2009). https://doi.org/10.1039/b814009j
  22. Gao, J., Mo, X. H., Chien, A. C.-Y., Torres, W. and Goodwin Jr, J. G., "CO Hydrogenation on Lanthana and Vanadia Doubly Promoted Rh/$SiO_2$ Catalysts," Catalysis, 262, 119-126(2009). https://doi.org/10.1016/j.jcat.2008.12.006
  23. Wu, R. F., Zhang, Y., Wang, Y. Z., Gao, C. G. and Zhao, Y. X., J. Fuel Chem. Tech., 37, 578-582(2009). https://doi.org/10.1016/S1872-5813(10)60009-6
  24. Wang, Y. Z., Wu, R. F. and Zhao, Y. X., "Effect of $ZrO_2$ Promoter on Structure and Catalytic Activity of the Ni/$SiO_2$ Catalyst for CO Methanation in Hydrogen-rich Gases," Catal. Today, 158, 470-474(2010). https://doi.org/10.1016/j.cattod.2010.07.016
  25. Karaselcuk, R., Inci Isli, A., Erhan Aksoylu, A., Ilsen Onsan Z., "CO Hydrogenation over Bimetallic Nickel-vanadium Catalysts," Appl. Catal. A: Gen., 192, 263-271(2000). https://doi.org/10.1016/S0926-860X(99)00409-3
  26. Kip, B. J., Smessts, P. A. T., Grondelle, J. and Van, Prins R., "Hydrogenation of Carbon Monoxide over Vanadium Oxide-promoted Rhodium Catalysts," Appl. Catal., 33, 181-208(1987). https://doi.org/10.1016/S0166-9834(00)80592-8
  27. Ishihara, T., Eguchi, K. and Arai, H., "Hydrogenation of Carbon Monoxide over $SiO_2$-supported Fe-Co, Co-Ni and Ni-Fe Bimetallic Catalysts," Appl. Catal., 30, 225-238(1987). https://doi.org/10.1016/S0166-9834(00)84115-9
  28. Wang, J. J., Chernavskii, P. A., Khodakov, A. Y. and Wang, Y., "Structure and Catalytic Performance of Alumina-supported Coppercobalt Catalysts for Carbon Monoxide Hydrogenation," Catalysis, 286, 51-61(2012). https://doi.org/10.1016/j.jcat.2011.10.012
  29. Zhao, J. J., Zong, Z. M., Xie, H. S., Liu, T., Li, J. J., Wang, T. T. and Wei, X. Y., Mining Science and Technology (China), 20, 296-311(2010). https://doi.org/10.1016/S1674-5264(09)60201-5
  30. Boellard, E., Scheur, F. Th., Kraan, and A. M., Geus, J. W., "Preparation, Reduction, and CO Chemisorption Properties of Cyanidederived CuxFe/$Al_2O_3$ Catalysts," Appl. Catal. A, 171, 333-350(1998). https://doi.org/10.1016/S0926-860X(98)00104-5
  31. Fujitani, T., Nakamura, I., Ueno, S., Uchijima, T., Nakamura, J., J. Appl. Surf. Sci., 122, 583-586(1997).
  32. Lin, M. G., Fang, K. G., Li, D. B. and Sun, Y. H., "CO Hydrogenation to Mixed Alcohols over co-precipitated Cu-Fe Catalysts," Catal. Commun., 9, 1869-1873(2008). https://doi.org/10.1016/j.catcom.2008.03.004
  33. Yu, Y., Jin, G. Q., Wang, Y. Y. and Guo, X. Y., "Synthetic Natural Gas from CO Hydrogenation over Silicon Carbide Supported Nickel Catalysts," Fuel Process. Technol., 92, 2293-2298(2011). https://doi.org/10.1016/j.fuproc.2011.08.002
  34. Jin, G. Q. and Guo, X. Y., "Synthesis and Characterization of Mesoporous Silicon Carbide," Micropor. Mesopor. Mater., 60, 207-212(2003). https://doi.org/10.1016/S1387-1811(03)00378-0
  35. Ni, Y. H., Wang, F., Liu, H. J., Liang, Y. Y., Yin, G., Hong, J. M., Ma, X. and Xu, Z., "Fabrication and Characterization of Hollow Cuprous Sulfide ($Cu_2$-xS) Microspheres by a Simple Templatefree Route," Inorg. Chem. Commun., 6, 1406-1408(2003). https://doi.org/10.1016/j.inoche.2003.08.022
  36. Zhang, J. G., Wang, H. and Dalai, A. K., "Development of Stable Bimetallic Catalysts for Carbon Dioxide Reforming of Methane," Catalysis, 249, 300-310(2007). https://doi.org/10.1016/j.jcat.2007.05.004
  37. Czekaj, I., Loviat, F., Raimondi, F., Wambach, J., Biollaz, S. and Wokaun, A., "Characterization of Surface Processes at the Nibased Catalyst During the Methanation of Biomass-derived Synthesis Gas: X-ray Photoelectron Spectroscopy (XPS)," Appl. Catal. A: Gen., 329, 68-78(2007). https://doi.org/10.1016/j.apcata.2007.06.027
  38. Yu, Z. B., Qiao, M. H., Li, H. X. and Deng, J. F., "Preparation of Amorphous Ni-Co-B Alloys and the Effect of Cobalt on Their Hydrogenation Activity," Appl. Catal. A: Gen., 163, 1-13(1997). https://doi.org/10.1016/S0926-860X(96)00419-X
  39. Petrov, K. and Will, G., "A New Cobalt-nickel Oxide Spinel Prepared Under High Pressure in An Oxygen Atmosphere," J. Mater. Sci. Lett., 6, 1153-1155(1987). https://doi.org/10.1007/BF01729167
  40. Engbaek, J., Lytken, O., Nielsen, J. H. and Chorkendorff, I., "CO Dissociation on Ni: The Effect of Steps and of Nickel Carbonyl," Surf. Sci., 602, 733-743(2008). https://doi.org/10.1016/j.susc.2007.12.008
  41. Hayes, R. E., Thomas, W. J. and Hayes, K. E., "A Study of the Nickel-catalyzed Methanation Reaction," Catalysis, 92, 312-326(1985). https://doi.org/10.1016/0021-9517(85)90266-0
  42. Mo, X. H., Tsai, Y.-T., Gao, J., Mao, D. S. and Goodwin, Jr J. G., "Effect of Component Interaction on the Activity of Co/CuZnO for CO Hydrogenation," Catalysis, 285, 208-215(2012). https://doi.org/10.1016/j.jcat.2011.09.033
  43. Yu, Y., Jin, G. Q., Wang, Y. Y. and Guo, X. Y., "Synthesis of Natural Gas from CO Methanation over SiC Supported Ni-Co Bimetallic Catalysts," Catal. Commun., 31, 5-10(2013). https://doi.org/10.1016/j.catcom.2012.11.005
  44. Xu, J. K., Zhou, W., Li, Z. J., Wang, J. H. and Ma, J. X., "Biogas Reforming for Hydrogen Production over Nickel and Cobalt Bimetallic Catalysts," Int. J. Hydrogen Energy, 34, 6646-6654(2009). https://doi.org/10.1016/j.ijhydene.2009.06.038
  45. Li, L., Lu, P., Yao, Y. and Ji, W. J., "Silica-encapsulated Bimetallic Co-Ni Nanoparticles as Novel Catalysts for Partial Oxidation of Methane to Synga," Catal. Commun., 26, 72-77(2012). https://doi.org/10.1016/j.catcom.2012.05.005
  46. Zhu, J. Q., Peng, X. X., Yao, L., Shen, J., Tong, D. M. and Hu, C. W., "The Promoting Effect of La, Mg, Co and Zn on the Activity and Stability of Ni/$SiO_2$ Catalyst for $CO_2$ Reforming of Methane," Int. J. Hydrogen Energy, 36, 7094-7104(2011). https://doi.org/10.1016/j.ijhydene.2011.02.133
  47. Hernandez, R. P., Galicia, G. M., Anaya, D. M., Palacios, J., Chavez, C. A. and Alatorre, J. A., "Synthesis and Characterization of Bimetallic Cu-Ni/$ZrO_2$ Nanocatalysts: $H_2$ Production by Oxidative Steam Reforming of Methanol," Int. J. Hydrogen Energy, 38, 4569-4576(2008).
  48. Lee, J. H., Lee, E. G., Joo, O. S. and Jung, K. D., "Stabilization of Ni/$Al_2O_3$ Catalyst by Cu Addition for $CO_2$ Reforming of Methane," Appl. Catal. A: Gen., 289, 1-6(2004).
  49. Boellard, E., Scheur, F. Th., Kraan, A. M. and Geus, J. W., Appl. Catal. A: Gen., 171, 333-350(1998). https://doi.org/10.1016/S0926-860X(98)00104-5
  50. Chen, J. L., Qiao, Y. H., Li, Y. D., "Methanation Sites on a Low Loading Ni/$Al_2O_3$ Catalyst," Appl. Catal. A: Gen., 337, 148-154(2008). https://doi.org/10.1016/j.apcata.2007.12.007

Cited by

  1. CO and CO2 methanation over M (MMn, Ce, Zr, Mg, K, Zn, or V)-promoted Ni/Al@Al2O3 catalysts vol.348, pp.None, 2020, https://doi.org/10.1016/j.cattod.2019.08.058
  2. Porous Silicon Carbide (SiC): A Chance for Improving Catalysts or Just Another Active-Phase Carrier? vol.121, pp.17, 2014, https://doi.org/10.1021/acs.chemrev.1c00269