DOI QR코드

DOI QR Code

Effect of Plating Conditions on Electroless Copper Plating on SiC Fabric

직조된 SiC 섬유에 무전해 구리도금 시 도금 조건의 영향

  • Lee, Kee Hwan (Department of Materials Science & Engineering, Chungnam National University) ;
  • Sohn, Youhan (Department of Materials Science & Engineering, Chungnam National University) ;
  • Han, Taeyang (Department of Materials Science & Engineering, Chungnam National University) ;
  • Lee, Kyung Jin (Department of Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Kim, Hye Hung (Department of Nanomechatronics Engineering, Pusan National University) ;
  • Han, Jun Hyun (Department of Materials Science & Engineering, Chungnam National University)
  • 이기환 (충남대학교 신소재공학과) ;
  • 손유한 (충남대학교 신소재공학과) ;
  • 한태양 (충남대학교 신소재공학과) ;
  • 이경진 (충남대학교 응용화학공학과) ;
  • 김혜성 (부산대학교 나노메카트로닉스공학과) ;
  • 한준현 (충남대학교 신소재공학과)
  • Received : 2017.06.18
  • Accepted : 2017.08.01
  • Published : 2017.08.31

Abstract

Effects of plating conditions (dispersant concentration, plating time, and ultrasonication) on electroless Cu plating on SiC fabric woven by crossing of SiC continuous fibers vertically were studied. The ultrasonic dispersion treatment not only did not improve the dispersion of the SiC fibers, but also did not change the plating thickness. The ultrasonication in the pretreatment step of electroless plating did not improve the dispersion of the fibers, while the ultrasonication in the plating step enhanced the dispersion of the fibers and decreased the thickness of the Cu films. It was possible to control the thickness of the Cu coating layer as well as the dispersion of the fibers in the fabric by changing the plating conditions such as dispersant concentration, plating time, and ultrasonication, but it was very difficult to coat copper on the intersection of vertical fibers in the fabric.

Keywords

References

  1. A.M. Bayomy, M.Z. Saghir, T. Yousefi, Electronic cooling using water flow in aluminum metal foam heat sink: Experimental and numerical approach, International Journal of Thermal Sciences 109 (2016) 182-200. https://doi.org/10.1016/j.ijthermalsci.2016.06.007
  2. P.K. Schelling, L. Shi, K.E. Goodson, Managing heat for electronics, Mater Today 8 (2005) 30-35.
  3. K. Mizuuchi, K. Inoue, Y. Agari, T. Nagaoka, M. Sugioka, M. Tanaka, T. Takeuchi, J. Tani, M. Kawahara, Y. Makino, M. Ito, Processing and thermal properties of Al/AlN composites in continuous solid-liquid co-existent state by spark plasma sintering, Composites Part B-Engineering 43 (2012) 1557-1563. https://doi.org/10.1016/j.compositesb.2011.06.017
  4. M. Kida, L. Weber, C. Monachon, A. Mortensen, Thermal conductivity and interfacial conductance of AlN particle reinforced metal matrix composites, Journal of Applied Physics 109 (2011) 064907. https://doi.org/10.1063/1.3553870
  5. K. Mizuuchi, K. Inoue, Y. Agari, T. Nagaoka, M. Sugioka, M. Tanaka, T. Takeuchi, J. Tani, M. Kawahara, Y. Makino, Processing of Al/SiC composites in continuous solid-liquid co-existent state by SPS and their thermal properties, Compos. Part B-Eng. 43 (2012) 2012-2019. https://doi.org/10.1016/j.compositesb.2012.02.004
  6. J. Molina, J. Narciso, L. Weber, A. Mortensen, E. Louis, Thermal conductivity of Al-SiC composites with monomodal and bimodal particle size distribution, Mater. Sci. Eng. A 480 (2008) 483-488. https://doi.org/10.1016/j.msea.2007.07.026
  7. B.G. Kim, S.L. Dong, S.D. Park, Effects of thermal processing on thermal expansion coefficient of a 50 vol.% SiCp/Al composite, Mater. Chem. Phys. 72 (2001) 42-47. https://doi.org/10.1016/S0254-0584(01)00306-6
  8. K. Pietrzak, N. Sobczak, M. Chmielewski, M. Homa, A. Gazda, R. Zybala, A. Strojny-Nedza, Effects of Carbon Allotropic Forms on Microstructure and Thermal Properties of Cu-C Composites Produced by SPS, J. Mater. Eng. Perform. 25 (2016) 3077-3083. https://doi.org/10.1007/s11665-015-1851-0
  9. E. Neubauer, M. Kitzmantel, M. Hulman, P. Angerer, Potential and challenges of metal-matrixcomposites reinforced with carbon nanofibers and carbon nanotubes, Compos. Sci. Technol. 70 (2010) 2228-2236. https://doi.org/10.1016/j.compscitech.2010.09.003
  10. P. Goli, H. Ning, X. Li, C.Y. Lu, K.S. Novoselov, A.A. Balandin, Thermal properties of graphenecopper-graphene heterogeneous films, Nano Lett. 14 (2014) 1497-1503. https://doi.org/10.1021/nl404719n
  11. D.M. Jarzabek, M. Milczarek, T. Wojciechowski, C. Dziekonski, M. Chmielewski, The effect of metal coatings on the interfacial bonding strength of ceramics to copper in sintered Cu-SiC composites, Ceramic International 43 (2017) 5283-5291. https://doi.org/10.1016/j.ceramint.2017.01.056
  12. M. Chmielewski, K. Pietrzak, A. Strojiny, K. Kaszyca, R. Zybala, P. Bazarnik, M. Lewandowska, S. Nosewicz, Microstructure and thermal properties of Cu-SiC composite materials depending on the sintering technique, Science of Sintering 49 (2017) 11-22. https://doi.org/10.2298/SOS1701011C
  13. O.S. Fatoba, O. Popoola, A.P.I. Popoola, The Effects of Silicon Carbide Reinforcement on the Properties of Cu/SiCp Composites, Silicon 7 (2015) 351-356. https://doi.org/10.1007/s12633-014-9199-x
  14. P. Wang, Z. Gao, D.F. Cheng, D.X. Xu, J.T. Niu, Effect of Ni-P alloy coating on microstructures and properties of vacuum brazed joints of SiCp/Al composites, Modern Physics Letters B 31 (2017) 1750082.
  15. Y.K. Jeong, S.R. Bang, S.T. Oh, Synthesis and Consolidation of Nano-Sized Cu Coated SiC Powders by a Chemical Method and Spark Plasma Sintering, Journal of Nanoscience and Nanotechnology 16 (2016) 1993-1995. https://doi.org/10.1166/jnn.2016.11957
  16. S. Faraji, A.H. Faraji, S.R. Noori, An investigation on electroless Cu-P composite coatings with micro and nano-SiC particles, Materials & Design 54 (2014) 570-575. https://doi.org/10.1016/j.matdes.2013.08.092
  17. K.H. Lee, S.J. Park, J.H. Han, Effects of plating conditions on thickness and surface roughness of electroless-plated Cu deposits, Korean J. Met. Mater. 54 (2016) 237-245. https://doi.org/10.3365/KJMM.2016.54.4.237