• Title/Summary/Keyword: Browder spectrum

Search Result 19, Processing Time 0.022 seconds

SEMI-QUASITRIANGULARITY OF TOEPLITZ OPERATORS WITH QUASICONTINUOUS SYMBOLS

  • Kim, In-Hyoun;Lee, Woo-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.77-84
    • /
    • 1998
  • In this note we show that if $T_{\varphi}$ is a Toeplitz operator with quasicontinuous symbol $\varphi$, if $\omega$ is an open set containing the spectrum $\sigma(T_\varphi)$, and if $H(\omega)$ denotes the set of analytic fuctions defined on $\omege$, then the following statements are equivalent: (a) $T_\varphi$ is semi-quasitriangular. (b) Browder's theorem holds for $f(T_\varphi)$ for every $f \in H(\omega)$. (c) Weyl's theorem holds for $f(T_\varphi)$ for every $f \in H(\omega)$. (d) $\sigma(T_{f \circ \varphi}) = f(\sigma(T_varphi))$ for every $f \in H(\omega)$.

  • PDF

WEYL TYPE-THEOREMS FOR DIRECT SUMS

  • Berkani, Mohammed;Zariouh, Hassan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.1027-1040
    • /
    • 2012
  • The aim of this paper is to study the Weyl type-theorems for the orthogonal direct sum $S{\oplus}T$, where S and T are bounded linear operators acting on a Banach space X. Among other results, we prove that if both T and S possesses property ($gb$) and if ${\Pi}(T){\subset}{\sigma}_a(S)$, ${\PI}(S){\subset}{\sigma}_a(T)$, then $S{\oplus}T$ possesses property ($gb$) if and only if ${\sigma}_{SBF^-_+}(S{\oplus}T)={\sigma}_{SBF^-_+}(S){\cup}{\sigma}_{SBF^-_+}(T)$. Moreover, we prove that if T and S both satisfies generalized Browder's theorem, then $S{\oplus}T$ satis es generalized Browder's theorem if and only if ${\sigma}_{BW}(S{\oplus}T)={\sigma}_{BW}(S){\cup}{\sigma}_{BW}(T)$.

WEYL SPECTRUM OF THE PRODUCTS OF OPERATORS

  • Cao, Xiaohong
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.771-780
    • /
    • 2008
  • Let $M_C=\(\array{A&C\\0&B}\)$ be a $2{\times}2$ upper triangular operator matrix acting on the Hilbert space $H{\bigoplus}K\;and\;let\;{\sigma}_w(\cdot)$ denote the Weyl spectrum. We give the necessary and sufficient conditions for operators A and B which ${\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w\(\array{A&C\\0&B}\)\;or\;{\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w(A){\cup}{\sigma}_w(B)$ holds for every $C{\in}B(K,\;H)$. We also study the Weyl's theorem for operator matrices.

WEYL'S TYPE THEOREMS FOR ALGEBRAICALLY (p, k)-QUASIHYPONORMAL OPERATORS

  • Rashid, Mohammad Hussein Mohammad;Noorani, Mohd Salmi Mohd
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.77-95
    • /
    • 2012
  • For a bounded linear operator T we prove the following assertions: (a) If T is algebraically (p, k)-quasihyponormal, then T is a-isoloid, polaroid, reguloid and a-polaroid. (b) If $T^*$ is algebraically (p, k)-quasihyponormal, then a-Weyl's theorem holds for f(T) for every $f{\in}Hol({\sigma}T))$, where $Hol({\sigma}(T))$ is the space of all functions that analytic in an open neighborhoods of ${\sigma}(T)$ of T. (c) If $T^*$ is algebraically (p, k)-quasihyponormal, then generalized a-Weyl's theorem holds for f(T) for every $f{\in}Hol({\sigma}T))$. (d) If T is a (p, k)-quasihyponormal operator, then the spectral mapping theorem holds for semi-B-essential approximate point spectrum $\sigma_{SBF_+^-}(T)$, and for left Drazin spectrum ${\sigma}_{lD}(T)$ for every $f{\in}Hol({\sigma}T))$.

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF

ON WEYL'S THEOREM FOR QUASI-CLASS A OPERATORS

  • Duggal Bhagwati P.;Jeon, In-Ho;Kim, In-Hyoun
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.899-909
    • /
    • 2006
  • Let T be a bounded linear operator on a complex infinite dimensional Hilbert space $\scr{H}$. We say that T is a quasi-class A operator if $T^*\|T^2\|T{\geq}T^*\|T\|^2T$. In this paper we prove that if T is a quasi-class A operator and f is a function analytic on a neigh-borhood or the spectrum or T, then f(T) satisfies Weyl's theorem and f($T^*$) satisfies a-Weyl's theorem.

GENERALIZED WEYL'S THEOREM FOR ALGEBRAICALLY $k$-QUASI-PARANORMAL OPERATORS

  • Senthilkumar, D.;Naik, P. Maheswari;Sivakumar, N.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.655-668
    • /
    • 2012
  • An operator $T\;{\varepsilon}\;B(\mathcal{H})$ is said to be $k$-quasi-paranormal operator if $||T^{k+1}x||^2\;{\leq}\;||T^{k+2}x||\;||T^kx||$ for every $x\;{\epsilon}\;\mathcal{H}$, $k$ is a natural number. This class of operators contains the class of paranormal operators and the class of quasi - class A operators. In this paper, using the operator matrix representation of $k$-quasi-paranormal operators which is related to the paranormal operators, we show that every algebraically $k$-quasi-paranormal operator has Bishop's property ($\beta$), which is an extension of the result proved for paranormal operators in [32]. Also we prove that (i) generalized Weyl's theorem holds for $f(T)$ for every $f\;{\epsilon}\;H({\sigma}(T))$; (ii) generalized a - Browder's theorem holds for $f(S)$ for every $S\;{\prec}\;T$ and $f\;{\epsilon}\;H({\sigma}(S))$; (iii) the spectral mapping theorem holds for the B - Weyl spectrum of T.

UPPER TRIANGULAR OPERATORS WITH SVEP

  • Duggal, Bhagwati Prashad
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.235-246
    • /
    • 2010
  • A Banach space operator A $\in$ B(X) is polaroid if the isolated points of the spectrum of A are poles of the resolvent of A; A is hereditarily polaroid, A $\in$ ($\mathcal{H}\mathcal{P}$), if every part of A is polaroid. Let $X^n\;=\;\oplus^n_{t=i}X_i$, where $X_i$ are Banach spaces, and let A denote the class of upper triangular operators A = $(A_{ij})_{1{\leq}i,j{\leq}n$, $A_{ij}\;{\in}\;B(X_j,X_i)$ and $A_{ij}$ = 0 for i > j. We prove that operators A $\in$ A such that $A_{ii}$ for all $1{\leq}i{\leq}n$, and $A^*$ have the single-valued extension property have spectral properties remarkably close to those of Jordan operators of order n and n-normal operators. Operators A $\in$ A such that $A_{ii}$ $\in$ ($\mathcal{H}\mathcal{P}$) for all $1{\leq}i{\leq}n$ are polaroid and have SVEP; hence they satisfy Weyl's theorem. Furthermore, A+R satisfies Browder's theorem for all upper triangular operators R, such that $\oplus^n_{i=1}R_{ii}$ is a Riesz operator, which commutes with A.