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ON WEYL’S THEOREM FOR
QUASI-CLASS A OPERATORS

BuacwaTI P. DuGgAL, IN Ho JEON, AND IN HyouN KM

ABSTRACT. Let T be a bounded linear operator on a complex in-
finite dimensional Hilbert space #. We say that T is a quasi-class
A operator if T*|T?|T > T*|T|*T. In this paper we prove that if T
is a quasi-class A operator and f is a function analytic on a neigh-
borhood of the spectrum of 7', then f(T') satisfies Weyl’s theorem
and f(T™) satisfies a-Weyl’s theorem.

1. Introduction

Let £ () denote the algebra of bounded linear operators on a com-
plex infinite dimensional Hilbert space 5. Recall (3], [9], [15], [29]) that
T € L(5#) is called p-hyponormal if (T*T) > (TT*)P for p € (0,1}, T
is called paranormal if ||T%x|| > ||Tx||? for all unit vector z € 5, and T
is called normaloid if [|T™|| = ||T||™ for n € N (equivalently, ||T|| = r(T),
the spectral radius of T'). Following [10] and [9] we say that T' € .Z(4¢)
belongs to class A if [T?| > |T|2. Recall ([17], [26], [28]) that T'is called p-
quasihyponormal if T*(T*T)PT > T*(TT*)PT for p € (0,1]. For brevity,
we shall denote classes of p-hyponormal operators, p-quasihyponormal
operators, paranormal operators, normaloid operators, and class A op-
erators by H(p), QH(p), PN, N and A, respectively. It is well known
that

(1) H(p) ¢ A C PN C NandH(p) C QH(p) C PN C N.

In [16] Jeon and Kim considered an extension of the notion of class A
operators, similar in spirit to the extension of the notion of p-hyponorma-
lity to p-quasihyponormality.
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DEFINITION 0.1. We say that T' € £ () is quasi-class A operator
if
T*|T?|T > T*|T|*T.
For brevity, we shall denote the set of quasi-class A operators by Q.A.
As shown in [16], the class of quasi-class A operators properly contains

classes of class A operators and p-quasihyponormal operators, i.e., the
following inclusions holds;

) H(p) C QM(p) C QA and H(p) C A C QA.

In view of inclusions (1), it seems reasonable to expect that the operators
in class QA are paranormal or at least normaloid: the following example
shows that one would be wrong in such an expectation.

EXAMPLE 0.2. ([16]) We consider unilateral weighted shift operators
on #2. Recall that given a bounded sequence of positive numbers « :
ag, 01, ... (called weights), the unilateral weighted shift W, associated
with « is the operator on 22 defined by Wye, := anens for all n > 0,
where {e,,}32, is the canonical orthonormal basis for ¢2. Straightforward
calculations show that W, belongs to QA if and only if

0
(67%4) 0
(3) Wo = a0 ;
ay O
where aq is arbitrary and a3 < as < ag < --- . So if we consider W,

having weights ag = 2 and «a; = % (¢ > 1), then we easily see that W,

is quasi-class A but not normaloid because ||[Wy|| = 2 # 1 = r(W,).

We shall denote the set of all complex numbers and the complex
conjugate of a complex number A by C and ), respectively. The closure
of a set M will be denoted by M and we shall henceforth shorten T'— AI
toT — X If T € Z(#) we shall write kerT and ranT for the null
space and range of T', respectively. An operator T € Z(5¢) is said to
be Fredholm if it has closed range, finite dimensional null space (i.e.,
a(T) = dim kerT < co), and its range has finite co-dimensional (i.e.,
B(T) := dim kerT™* < co0). We consider the sets

@, () := {T € L(5#) : ranT is closed and o(T) < oo},
O_(H#) = {T € ZL(H) : ranT is closed and B(T') < oo},
B(H) = DL (H)NP_(H),
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and
O (S) 1= D () U D_(I7).
We say that T' € £ () is semi-Fredholm if T € ®, (). Evidently,
T is Fredholm if and only if T € (7).
IfT € ®,(57), then the index of T, denoted ind(T), is given by
ind(T) = a(T) — B(T).

The index is an integer or {+oo}. The ascent of T € £ (), denote
asc(T), is the least non-negative integer n such that kerT™ = ker7™+!
and the descent of T', denote dsc(T'), is the least non-negative integer n
such that ranT™ = ranT™"!. We say that T € Z(#) is of finite ascent
(resp. finite descent) if asc(T — A) < oo (resp. dsc(T — ) < oo) for
all A € C. An operator T € .Z(5#) is called Weyl if it is Fredholm of
index zero, and T' € £ () is called Browder if it is Fredholm of “finite
ascent and descent”: equivalently [11, Theorem 7.9.3] if T is Fredholm
and T — ) is invertible for sufficiently small A #£ 0 in C. We denote
the spectrum of T € £ () by o(T), and the sets of isolated points
and accumulation points of o(T') are denoted by isoo(T') and acco (T),
respectively. The essential spectrum o.(T), the Weyl spectrum o, (7T,
and the Browder spectrum o,(T) of T' € £ () are defined by

0e(T) ={A € C: T — X is not Fredholm},
ow(T)={X € C: T — X is not Weyl},
op(T) ={A € C: T — X is not Browder}.

It is well known [11] that
0e(T) C ow(T) C 0p(T) = 0.(T) Uacco(T).

Let J¢(5#) denote the ideal of compact operators in Z(5#), and
congsider the following spectral subsets:

04(T) :={X € C: T — X is not bounded below},

Oaw(T) :=(Woo(T+ K) : K € H(5¢)},

oa(T) :=(Hoo(T + K) : K € X (5#) and TK = KT},
0s(T) :={A € C: T — X is not surjective},

osw(T) :=(Wos(T+ K) : K € X ()},

op(T) := {A € C: T — X is not injective},

7o(T) :=o(T) \ op(T),

moo(T) :={A € C: X €isoo(T) and 0 < a(T — \) < o0},

and
Ta0(T) :={A € C: X € is00,(T) and 0 < (T — \) < 00}
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Evidently
7o(T) € moo(T) C mao(T),
and [23] that
Caw(T) ={AeC:T -\ ¢ & ()},
where ®_ () .= {T € &, () : ind(T) < 0}.
Following [12], [5], [24], and [6] we say that T' € Z(H) satisfies
Browder’s theorem if

o(T) \ ow(T) = mo(T),
T satisfies Weyl’s theorem if there is equality
a(T)\ ou(T) = 7o (T),
T satisfies a-Weyl’s theorem if there is equality
0a(T) \ 0aw(T) = mao(T),
and T satisfies a-Browder’s theorem if there is equality
O‘aw(T) = Uab(T).
It is well known ([6], [12]) that
Weyl’s theorem
/ N
a-Weyl’s theorem Browder’s theorem
N\ /
a-Browder’s theorem

Let H(o(T)) be the set of all analytic functions on an open neigh-
borhood of o(T'). In [21], Lee and Lee showed that if T is hyponormal
and f € H(o(T)), then Weyl’s theorem holds for f(7'). Recently, this
result was extended to p-quasihyponormal and class A operators in [28]
and [27], respectively.

In this paper we prove that if T € QA and f € H(o(T)), then f(T)
satisfies Weyl’s theorem and f(7™) satisfies a-Weyl’s theorem, respec-
tively. This completely extends earlier results proved in [28] and [27],
respectively. During the course of proving these results, we prove also
that if T € QA, then T and T™ satisfy a-Browder’s theorem.

1. Results

1.1. Weyl’s theorem for f(T")

We begin by recalling some basic properties of QA operators from
[16].
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ProprosiTION 1.1. Let T € QA and T not have dense range. Then

T = (‘3 8) on ¢ =ranT & kerT™,
where A = T'|—=, the restriction of T to ranT, belongs to .A. Moreover,
o(T) =0(A) U {0}.

PROPOSITION 1.2. Let T € QA and let A # 0. Then
(T-XNz=0= (T-N'z=0; v

PROPOSITION 1.3. Let T € QA. If A\,(# 0) € isoo(T) and E is the
Riesz idempotent for A\, then E is self-adjoint and

(4) ranE = ker(T — X\;) = ker(T — Xo)*.

A proof of Proposition 1.3 appears in [16]. However, in view of Propo-
sition 1.2, the following argument provides a quick proof of Proposition
1.3. Observe that the non-zero isolated points of ¢(7") are isolated points
of 6(A), and hence eigenvalues of T' (see Lemma 1.8 below). Proposi-
tion 1.2 implies that the non-zero eigenvalues of T' are normal (i.e., if
0 # X is an eigenvalue of T, then ker(T — X;) reduces T'). Hence
S = ranE @ kerE, )\ is a pole of the resolvent of T', the (Riesz) pro-
jection F is self-adjoint and ranFE = ker(T — ;) = ker(T — Xo)*.

In this subsection we prove the following.

THEOREM 14. If T € QA, then f(T) satisfies Weyl’s theorem for
every f € H(o(T)).

To prove Theorem 1.4 we need following series of lemmas.

The class of operators having finite ascent is considerably large, and
very important. For example, generalized scalar operators, subscalar
operators, and operators satisfying Bishop’s property (3) are of finite
ascent. Therefore, in particular, hyponormal operators, p-hyponormal
operators [29], p-quasihyponormal operators, and class A operators [4]
are of finite ascent. The following result say that every T € QA also is
of finite ascent.

LEMMA 1.5. Let T € QA. Then T is of finite ascent.

Proof. To prove this lemma we shall show that ker(T —\)? = ker(T —
A)3. Since we can easily conclude from Proposition 1.2 that

ker(T — \) = ker(T — \)? for A # 0,
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it suffices to prove that kerT? = kerT®. Now assume that T3z = 0 but
Tz # 0 because if Tz = 0 then we obviously get the conclusion. Using
Holder-McCarthy inequality [22], we have

0 = ||T%|| = (T%, T32): = (T*]*Tz,Tx)?
> (|T?|Tx, Tx)||Tx||™
> (|ITPTz, Ta)||Ta|| ™" = |72\ T,

which implies kerT? D kerT?. Consequently, kerT? = kerT®. Hence the
proof is complete. O

It was shown in [27] that Weyl’s theorem holds for class A operators.
We can prove more:

LEMMA 1.6. If T € QA, then T satisfies Weyl’s theorem.

Proof. To prove this lemma we use the fact [14, Theorem 2] that
if T has finite ascent, then Weyl’s theorem holds for T if and only if
ran(T — )\) has closed range for A € moo(T"). Assume that A € mpo(T')
and , see Proposition 1.1, let

T= (61 'g) on ¥ =ranT @ kerT™.

Case 1. A # 0: if 0 # X € mpo(T'), then 0 < dim ker(T' — A) < co0. So
0 < dim ker(T — A)* < oo by Proposition 1.3. Hence T — X has closed
range.

Case 2. A = 0: if 0 € mgp(T"), we see that 0 € mpo(A) or 0 ¢ o(A). If
0 € mgo(A), then A is Weyl because Weyl’s theorem holds for A [27]. So
A can be perturbed by a compact operator K to an invertible operator
U, i.e., A=U+K. Thus we have that

GG D6,

where <U S) is invertible with the inverse matrix ( 0 _J

0 —-I

and is compact. Hence T is also Weyl, and so T has closed

K 0
0 I
range. On the other hand, if 0 ¢ o(A) (i.e., A is invertible), then T" has
a generalized inverse. Indeed, we have that

(3 3)-G DA G
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In Hilbert space context, it is well known [11] that T has a generalized
inverse if and only if T has closed range, and hence this completes the
proof. O

REMARK 1.7. A proof of Lemma 1.6 may also be obtained by com-
bining results from the papers [19] and [20] on Weyl’s theorem for upper
triangular operator matrices by W. Y. Lee. Thus, since Weyl’s theo-
rem holds for A, A is isoloid and o4,(A) N 04,(0) has no interior, Weyl'’s
theorem holds for A®0 [20, Corollary 9]; again, since ¢ (0) has no pseudo-
holes (and A is isoloid, and Wey!’s theorem holds for both A and A®0),
Weyl’s theorem holds for T' [19, Theorem 2.4]. However, we have in the
above given a direct proof of Lemma 1.6 using an alternative argument
based upon the results of [14].

LeEMMA 1.8. Operators T € Q.A are isoloid.

Proof. Assume that A\ € isoo(T). Then \ € isoo(A) or A = 0 if
A ¢ o(A). If X € isoo(A), X € 0,(A) because A is isoloid. This easily
implies that A € o,(T).

On the other hand, if 0 € isoo(T) and 0 ¢ o(A), then kerT™ # {0}.
So we can take a non-zero vector y € kerT*, and then A71Sy @ y is an
eigenvector of T. Therefore, 0 € ap(T). a

LEMMA 1.9. Let T € QA. Then
(5) 7(f(T)) = f(r(T)) forevery f € H(o(T)),
where 7(T) denotes either of 0,,(T') or 64,(T) or o4,(T).

Proof. Recall that a semi-Fredholm operator T is said to have stable
indez if either ind(T" — A) > 0 or ind(T" — A) < 0 for all complex A
such that T' — X is semi-Fredholm. Recall also from Schmoeger (25,
Theorems 2, 4 and 5] (see also [12]) that if T" is of stable index for all
A such that: (i) T — A € ®4(H), then 04,(f(T)) = f(oaw(T)); (ii)
T — )\ € ®_(5), then o5, (f(T)) = f(osuw(T)), and (iii) T — A € ®(5#),
then o, (f(T)) = f(ow(T)) for every f € H(o(T)). Hence, since the
finite ascent property of T' € QA implies ind(7 — A) < 0 for all complex
A [13, Proposition 38.5], a proof of the lemma follows from Lemma
1.5. il

We are now ready to prove Theorem 1.4.
Proof. Recall [21, Lemma] that if A € £ () is isoloid, then
£(0(4) \ m00(A)) = o (F(A)) \ mo(f(A) for every f € H(a(A)).
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Thus it follows from Lemmas 1.6, 1.8, 1.9 that

a(f(T)) \ moo(f(T)) = f(o(T) \ m0o(T)) = f(ow(T)) = ou(f(T)),
which implies that f(7T') satisfies Weyl’s theorem. O

1.2. a-Weyl’s theorem for f(T%)

In this subsection, it will be deduced that f(T™*) satisfies Weyl’s theo-
rem from the more general result that f(7*) satisfies a-Weyl’s theorem.
We say that T' € £ (J#) has the single valued extension property (say,
SVEP) at A\, € C if, for a neighborhood U of X\,, f = 0 is the only
analytic function f : U — % satisfying (T — \)f(A) = 0. Also, we
say that T has SVEP if T has this property at every A € C. It is well
known [18] that the finite ascent property implies SVEP. Thus we see
that operators T' € QA have SVEP from Lemma 1.5.

LEMMA 1.10. If T € QA, then T and T* satisfy a-Browder’s theorem.

Proof. Recall that an operator T satisfies a-Browder’s theorem if and
only if 044(T) = 04w(T). Since asc(T — A) < oo for every A € o(T),
Mg oaw(T) =T — X € ®L(H) and asc(T — A) < 00 => A ¢ 0a(T).
Since 04w (T) C oa(T) for every operator T, 04u(T) = 0ap(T) = T
satisfies a-Browder’s theorem. Again, if X ¢ 04, (T*), then T* — X €
@ ()= T—Xe ®_(H) and ind(T — A) > 0. Since asc(T — A) <
00 = ind(T—A) <0, T—A € ®_(H#) and ind(T—A\) =0 =>T— X €
®(s#), nd(T ~ A) = 0 and asc(T — \) < o0 = T — X € &(H) and
asc(T — \) = dsc¢(T — A) < oo [13, Proposition 38.6] <= T* — X €
() and asc(T* — X) = dsc(T* — X) < oo. Hence X ¢ 0qp(T*) =
Oaw(T*) = 0gp(T*). This completes the proof. O

REMARK 1.11. Lemma 1.10 is a particular case of a more general
result: If either T or T has SVEP for a Banach space operator T' €
L(Z), then both T and T* satisfy a-Browder’s theorem [2, Corollary
2.4]. A necessary and sufficient condition for T' € £ (%) to satisfy a-
Browder’s theorem is that 7" has SVEP at points A € 04(T) \ 04w(T) [7,
Lemma 2.18].

LEMMA 1.12. Points A € moo(T*) for a T € QA are poles of the
resolvent.

Proof. If 0 # X € mpo(T*), then A\ € isoo(T) = X is a normal
eigenvalue of T' (by Proposition 1.2), and hence a simple pole of the
resolvent of 7' (Proposition 1.3). If, instead, A = 0, then dim kerT™ <
0o == ranT™* is closed (see the proof of Lemma 1.6) and hence T* €
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&, () = T € &_(s). Since both T and T™ have SVEP at 0, it
follows that asc(T") = dsc(T") < oo (see [1, Theorem 2.3] or [2, Theorem
1.2]) == 0 is a pole of the resolvent of T == 0 is a pole of the resolvent
of T*. O

THEOREM 1.13. If T € QA, then f(T*) satisfies a-Weyl’s theorem
for every f € H(o(T)).

Proof. Recall from [1, Theorem 3.6] (see also [8]) that for a Banach
space operator T with SVEP, T* satisfies Weyl’s theorem if and only
if T* satisfies a-Weyl’s theorem. Since T has SVEP implies f(T") has
SVEP for every f € H(o(T')) [18, Theorem 3.3.6], it will suffice to prove
that f(T™*) satisfies Weyl’s theorem. Observe that if T € QA, then
asc(T — ) < 0o = ind(T — A) < 0 = ind(T* = \) > 0 for every A
hence (since 0,(T) = 0, (T*) and o(f(T™)) = o(f(T)*)) it follows from
Lemma 1.8 and the proof of Theorem 1.4 that it will suffice to prove
that T™ satisfies Weyl’s theorem. Since T™ satisfies Browder’s theorem
(by Lemma. 1.10), o(T*}\ 04, (T™*) = mo(T™*) € moo(T™). Let X € moo(T*);
then X € mo(T*) (by Lemma 1.12). Hence mo(T™*) = mgo(T*) = T*
satisfies Weyl’s theorem. O

Observe that T € QA may not satisfy a-Weyl’s theorem: consider
for example the forward unilateral shift. The following theorem gives a
sufficient condition for 7" € Q.A to satisfy a-Weyl’s theorem.

THEOREM 1.14. Let T € QA. Then a sufficient condition for f(T')
to satisfy a-Weyl’s theorem for every f € H(o(T')) is that T* has SVEP.

Proof. If T* has SVEP, then o(T) = 04(T"); hence 04,(T) = 04(T)
and ma0(T") = meo(T). Since T satisfies Weyl’s theorem, T satisfies a-
Weyl’s theorem. The conclusion that f(T') satisfies a-Weyl’s theorem
now follows since T is isoloid (Lemma 1.8) and o4, (T) satisfies the
spectral mapping theorem (Lemma 1.9). 0
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