• Title/Summary/Keyword: Bounded positive solution

Search Result 38, Processing Time 0.025 seconds

EVOLUTION EQUATIONS ON A RIEMANNIAN MANIFOLD WITH A LOWER RICCI CURVATURE BOUND

  • Chang, Jeongwook
    • East Asian mathematical journal
    • /
    • v.30 no.1
    • /
    • pp.79-91
    • /
    • 2014
  • We consider the parabolic evolution differential equation such as heat equation and porus-medium equation on a Riemannian manifold M whose Ricci curvature is bounded below by $-(n-1)k^2$ and bounded below by 0 on some amount of M. We derive some bounds of differential quantities for a positive solution and some inequalities which resemble Harnack inequalities.

BIFURCATION PROBLEM FOR A CLASS OF QUASILINEAR FRACTIONAL SCHRÖDINGER EQUATIONS

  • Abid, Imed
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1347-1372
    • /
    • 2020
  • We study bifurcation for the following fractional Schrödinger equation $$\{\left.\begin{eqnarray}(-{\Delta})^su+V(x)u&=&{\lambda}f(u)&&{\text{in}}\;{\Omega}\\u&>&0&&{\text{in}}\;{\Omega}\\u&=&0&&{\hspace{32}}{\text{in}}\;{\mathbb{R}}^n{\backslash}{\Omega}\end{eqnarray}\right$$ where 0 < s < 1, n > 2s, Ω is a bounded smooth domain of ℝn, (-∆)s is the fractional Laplacian of order s, V is the potential energy satisfying suitable assumptions and λ is a positive real parameter. The nonlinear term f is a positive nondecreasing convex function, asymptotically linear that is $\lim_{t{\rightarrow}+{\infty}}\;{\frac{f(t)}{t}}=a{\in}(0,+{\infty})$. We discuss the existence, uniqueness and stability of a positive solution and we also prove the existence of critical value and the uniqueness of extremal solutions. We take into account the types of Bifurcation problem for a class of quasilinear fractional Schrödinger equations, we also establish the asymptotic behavior of the solution around the bifurcation point.

A NOTE ON BOUNDARY BLOW-UP PROBLEM OF 𝚫u = up

  • Kim, Seick
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.245-251
    • /
    • 2019
  • Assume that ${\Omega}$ is a bounded domain in ${\mathbb{R}}^n$ with $n{\geq}2$. We study positive solutions to the problem, ${\Delta}u=u^p$ in ${\Omega}$, $u(x){\rightarrow}{\infty}$ as $x{\rightarrow}{\partial}{\Omega}$, where p > 1. Such solutions are called boundary blow-up solutions of ${\Delta}u=u^p$. We show that a boundary blow-up solution exists in any bounded domain if 1 < p < ${\frac{n}{n-2}}$. In particular, when n = 2, there exists a boundary blow-up solution to ${\Delta}u=u^p$ for all $p{\in}(1,{\infty})$. We also prove the uniqueness under the additional assumption that the domain satisfies the condition ${\partial}{\Omega}={\partial}{\bar{\Omega}}$.

CONVERGENCE AND DECAY ESTIMATES FOR A NON-AUTONOMOUS DISPERSIVE-DISSIPATIVE EQUATION WITH TIME-DEPENDENT COEFFICIENTS

  • Kim, Eun-Seok
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.281-295
    • /
    • 2022
  • This paper deals with the long - time behavior of global bounded solutions for a non-autonomous dispersive-dissipative equation with time-dependent nonlinear damping terms under the null Dirichlet boundary condition. By a new Lyapunov functional and Łojasiewicz-Simon inequality, we show that any global bounded solution converges to a steady state and get the rate of convergence as well, which depends on the decay of the non-autonomous term g(x, t), when damping coefficients are integral positive and positive-negative, respectively.

A NOTE ON ZEROS OF BOUNDED HOLOMORPHIC FUNCTIONS IN WEAKLY PSEUDOCONVEX DOMAINS IN ℂ2

  • Ha, Ly Kim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.993-1002
    • /
    • 2017
  • Let ${\Omega}$ be a bounded, uniformly totally pseudoconvex domain in ${\mathbb{C}}^2$ with the smooth boundary b${\Omega}$. Assuming that ${\Omega}$ satisfies the negative ${\bar{\partial}}$ property. Let M be a positive, finite area divisor of ${\Omega}$. In this paper, we will prove that: if ${\Omega}$ admits a maximal type F and the ${\check{C}}eck$ cohomology class of the second order vanishes in ${\Omega}$, there is a bounded holomorphic function in ${\Omega}$ such that its zero set is M. The proof is based on the method given by Shaw [27].

ASYMPTOTIC STABILIZATION FOR A DISPERSIVE-DISSIPATIVE EQUATION WITH TIME-DEPENDENT DAMPING TERMS

  • Yi, Su-Cheol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.445-468
    • /
    • 2020
  • A long-time behavior of global solutions for a dispersive-dissipative equation with time-dependent damping terms is investigated under null Dirichlet boundary condition. By virtue of an appropriate new Lyapunov function and the Lojasiewicz-Simon inequality, we show that any global bounded solution converges to a steady state and get the rate of convergence as well, when damping coefficients are integrally positive and positive-negative, respectively. Moreover, under the assumptions on on-off or sign-changing damping, we derive an asymptotic stability of solutions.

STABILITY RESULTS OF POSITIVE WEAK SOLUTION FOR SINGULAR p-LAPLACIAN NONLINEAR SYSTEM

  • KHAFAGY, SALAH;SERAG, HASSAN
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.173-179
    • /
    • 2018
  • In this paper, we investigate the stability of positive weak solution for the singular p-Laplacian nonlinear system $-div[{\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^{p-2}{\nabla}u]+m(x){\mid}u{\mid}^{p-2}u={\lambda}{\mid}x{\mid}^{-(a+1)p+c}b(x)f(u)$ in ${\Omega}$, Bu = 0 on ${\partial}{\Omega}$, where ${\Omega}{\subset}R^n$ is a bounded domain with smooth boundary $Bu={\delta}h(x)u+(1-{\delta})\frac{{\partial}u}{{\partial}n}$ where ${\delta}{\in}[0,1]$, $h:{\partial}{\Omega}{\rightarrow}R^+$ with h = 1 when ${\delta}=1$, $0{\in}{\Omega}$, 1 < p < n, 0 ${\leq}$ a < ${\frac{n-p}{p}}$, m(x) is a weight function, the continuous function $b(x):{\Omega}{\rightarrow}R$ satisfies either b(x) > 0 or b(x) < 0 for all $x{\in}{\Omega}$, ${\lambda}$ is a positive parameter and $f:[0,{\infty}){\rightarrow}R$ is a continuous function. We provide a simple proof to establish that every positive solution is unstable under certain conditions.

THE STUDY OF THE SYSTEM OF NONLINEAR WAVE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.261-267
    • /
    • 2007
  • We show the existence of the positive solution for the system of the following nonlinear wave equations with Dirichlet boundary conditions $$u_{tt}-u_{xx}+av^+=s{\phi}_{00}+f$$, $$v_{tt}-v_{xx}+bu^+=t{\phi}_{00}+g$$, $$u({\pm}\frac{\pi}{2},t)=v({\pm}\frac{\pi}{2},t)=0$$, where $u_+=max\{u,0\}$, s, $t{\in}R$, ${\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}=1$ of the eigenvalue problem $u_{tt}-u_{xx}={\lambda}_{mn}u$ with $u({\pm}\frac{\pi}{2},t)=0$, $u(x,t+{\pi})=u(x,t)=u(-x,t)=u(x,-t)$ and f, g are ${\pi}$-periodic, even in x and t and bounded functions in $[-\frac{\pi}{2},\frac{\pi}{2}]{\times}[-\frac{\pi}{2},\frac{\pi}{2}]$ with $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}f{\phi}_{00}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}g{\phi}_{00}=0$.

  • PDF

EXISTENCE OF A POSITIVE SOLUTION FOR THE SYSTEM OF THE NONLINEAR BIHARMONIC EQUATIONS

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • v.15 no.1
    • /
    • pp.51-57
    • /
    • 2007
  • We prove the existence of a positive solution for the system of the following nonlinear biharmonic equations with Dirichlet boundary condition $$\{{\Delta}^2u+c{\Delta}u+av^+=s_1{\phi}_1+{\epsilon}_1h_1(x)\;in\;{\Omega},\\{\Delta}^2v+c{\Delta}v+bu^+=s_2{\phi}_1+{\epsilon}_2h_2(x)\;in\;{\Omega},$$ where $u^+= max\{u,0\}$, $c{\in}R$, $s{\in}R$, ${\Delta}^2$ denotes the biharmonic operator and ${\phi}_1$ is the positive eigenfunction of the eigenvalue problem $-{\Delta}$ with Dirichlet boundary condition. Here ${\epsilon}_1$, ${\epsilon}_2$ are small numbers and $h_1(x)$, $h_2(x)$ are bounded.

  • PDF

ON THE EXISTENCE OF POSITIVE SOLUTION FOR A CLASS OF NONLINEAR ELLIPTIC SYSTEM WITH MULTIPLE PARAMETERS AND SINGULAR WEIGHTS

  • Rasouli, S.H.
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.557-564
    • /
    • 2012
  • This study concerns the existence of positive solution for the following nonlinear system $$\{-div(|x|^{-ap}|{\nabla}u|^{p-2}{\nabla}u)=|x|^{-(a+1)p+c_1}({\alpha}_1f(v)+{\beta}_1h(u)),x{\in}{\Omega},\\-div(|x|^{-bq}|{\nabla}v|q^{-2}{\nabla}v)=|x|^{-(b+1)q+c_2}({\alpha}_2g(u)+{\beta}_2k(v)),x{\in}{\Omega},\\u=v=0,x{\in}{\partial}{\Omega}$$, where ${\Omega}$ is a bounded smooth domain of $\mathbb{R}^N$ with $0{\in}{\Omega}$, 1 < $p,q$ < N, $0{{\leq}}a<\frac{N-p}{p}$, $0{{\leq}}b<\frac{N-q}{q}$ and $c_1$, $c_2$, ${\alpha}_1$, ${\alpha}_2$, ${\beta}_1$, ${\beta}_2$ are positive parameters. Here $f,g,h,k$ : $[0,{\infty}){\rightarrow}[0,{\infty})$ are nondecresing continuous functions and $$\lim_{s{\rightarrow}{\infty}}\frac{f(Ag(s)^{\frac{1}{q-1}})}{s^{p-1}}=0$$ for every A > 0. We discuss the existence of positive solution when $f,g,h$ and $k$ satisfy certain additional conditions. We use the method of sub-super solutions to establish our results.