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ASYMPTOTIC STABILIZATION FOR A

DISPERSIVE-DISSIPATIVE EQUATION WITH

TIME-DEPENDENT DAMPING TERMS

Su-Cheol Yi*

Abstract. A long-time behavior of global solutions for a dispersive-
dissipative equation with time-dependent damping terms is inves-
tigated under null Dirichlet boundary condition. By virtue of an
appropriate new Lyapunov function and the  Lojasiewicz-Simon in-
equality, we show that any global bounded solution converges to a
steady state and get the rate of convergence as well, when damp-
ing coefficients are integrally positive and positive-negative, respec-
tively. Moreover, under the assumptions on on-off or sign-changing
damping, we derive an asymptotic stability of solutions.

1. Introduction and main results

Consider the dispersive-dissipative equation with time-dependent
damping terms

(1.1) utt−∆utt−∆u+h1(t)g(ut)−h2(t)∆ut = f(u), (x, t) ∈ Ω×[0,∞),

under the null Dirichlet boundary and initial conditions

(1.2) u(x, t) = 0, (x, t) ∈ ∂Ω× [0,∞),

(1.3) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary
∂Ω, the function u0, u1 : Ω→ R are given initial data, and the nonlinear
damping function g satisfies the condition
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(G): g is a C1-function in R with g(0) = 0 and there exist positive
constants α1 and α2 such that

α1 ≤ g′(v) ≤ α2, ∀v ∈ R.

The damping coefficients hi (i = 1, 2) and the nonlinearity f will be
specified later.

Nonlinear evolution equations with the main part utt−∆utt−∆u and
different nonlinear terms arose in the study of the spread of longitudinal
strain waves in the nonlinear elastic rods (cf. [2, 3]) and the weakly
nonlinear ion acoustic and space-charge waves, see [22]. For example, in
one-dimensional spaces, Hayes and Saccomandi [15] derived the nonlin-
ear wave equation with strong damping −uxxt in the framework of the
Mooney-Rivlin viscoelastic solids of second grade, when the propagation
of transverse homogeneous waves was studied. Chree deduced the wave
equation with dispersive term ut only, in the study of the longitudinal
vibration of a bar (cf. [19, 21 (p.428)]). In this framework, the disper-
sive term represents the lateral inertia of the bar, and the weak damping
term may be introduced to model the contact of the bar with a rough
substrate or a viscous external medium, see [24]. Hence, it is interest-
ing to consider the global well-posedness and qualitative properties of
solutions for the dispersive-dissipative wave model (1.1).

In the past decades, there have been many researchers dealing with
the existence, asymptotic behavior and blow-up of solutions to the disper-
sive-dissipative equations with nonlinearity, refer to [4, 7, 18, 26, 27] for
the equations with constant coefficients. Especially, one can refer to [7,
18, 27] for the existence of local solution and global solution, [18, 27] for
the estimate of exponentially decay rate for global solutions with posi-
tive definite energy, and [7, 26] for blow-up property of solutions with
arbitrarily positive initial energy.

In this paper, we investigate a long-time behavior of global solutions
to the initial boundary problem of nonlinear dispersive-dissipative wave
equation with time-dependent damping and, especially, the convergence
to steady state of all global bounded solutions, and the asymptotic sta-
bility of the energy. For the topic on convergence to a steady state of
solutions, there have been many studies, one can refer to [9, 10, 16] for
linear damping with constant coefficient and [12] for nonlinear damping
with constant coefficient and so on. Jiao [17] investigated the following
wave equation with time-dependent damping and analytic nonlinearity:

utt −∆u+ h(t)ut = f(u), (x, t) ∈ Ω× [0,∞).
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Under Dirichlet boundary condition, Jiao showed that global solutions
converge to a steady state when time tends to infinite by the generalized
 Lojasiewicz-Simon inequality. Furthermore, Jiao considered two classes
of general cases: (i) Initial value problem of abstract damped wave
equation with analytic nonlinearity

ü+ h(t)Bu̇+Au = f(u), t ∈ (0,∞),

where A : H → H is a second order strongly elliptic operator on H with
dense domain, H = L2(Ω) is the usual Hilbert space and B : H → H
is a bounded linear operator satisfying the coerciveness condition, and
(ii) Dirichlet initial boundary value problem of a class of wave equations
with nonlinear interior damping and analytic nonlinear source term

utt −∆u+ h(t)g(ut) = f(u), (x, t) ∈ Ω× [0,∞),

where g is a function such that (G1) g ∈ C1(R) and g is a monotone
increasing function with 0 < m1 ≤ g′(s) ≤ m2 < ∞, ∀s ∈ R and (G2)
g(0) = 0. The key point is that all the papers on the problems above
used an inequality, so-called the  Lojasiewicz-Simon inequality, to obtain
the results. However, it is required that the nonlinearity f(s) is analytic
with respect to s.

On the topic of asymptotic stability of the problems with intermittent
time-dependent damping, originated from the theory of ordinary differ-
ential equations, one can refer to [1, 13, 14, 20, 23]. Inspired by the
works above, Haraux et al. [11] investigated the linear wave equations
with on-off damping and the authors presented some sufficient conditions
for asymptotic stability, which is an improvement of the previous result
of Smith [23] concerning ordinary differential equations. They further
established a stability result for the case of a positive-negative damping
by employing the same method as in [11]. Later, taking the influence of
the forcing term into consideration, Fragnelli and Mugnai [5] concerned
with some classes of nonlinear abstract damped wave equations, whose
prototype is the usual wave equation

utt −∆u+ h(t)ut = f(u), (x, t) ∈ Ω× [0,∞).

Under the null Dirichlet boundary condition, the authors obtained some
sufficient conditions for the asymptotic stability of the solutions to the
problem with nonnegative damping which may be on-off or integrally
positive type. Also, Fragnelli and Mugnai [6] investigated the same prob-
lem with sign-changing damping and the authors introduced some suf-
ficient conditions for asymptotic stability. Wu [25] studied the Dirichet
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initial boundary value problem for nonlinear wave equations of Kirchhoff
type with an intermittent damping

utt −M(‖∇u‖22)∆u+ h(t)g(ut) + f(u) = 0, (x, t) ∈ Ω× [0,∞).

The author established an asymptotic stability under some conditions,
and in that study, it was not necessary for f to be analytic, but only
the condition that f is a C1-function was enough.

Motivated by these works, our aim is to study the asymptotic be-
havior of global solutions to the dispersive-dissipative wave model (1.1)-
(1.3) with intermittent time-dependent damping; that is, global bounded
solutions to (1.1)-(1.3) converge to a steady state as time tends to in-
finity, when time-dependent coefficients are on-off and positive-negative
types, and the energy of (1.1)-(1.3) is asymptotically stable, when time-
dependent coefficients are on-off and positive-negative types. Our main
difficulties are to construct an appropriate new Lyapunov function that
is available to use the  Lojasiewicz-Simon inequality and to derive the
decay property of the energy on a short time closed interval.

Throughout this paper, we use the following notations:

•We denote the inner products and norms on the spacesH1
0 (Ω), H−1(Ω),

and L2(Ω) by (·, ·)H1
0 (Ω), (·, ·)∗, and (·, ·)2 (‖ · ‖H1

0 (Ω), ‖ · ‖∗, and ‖ · ‖2),

respectively, and the norm on Lp(Ω) is denoted by ‖ · ‖p.

• Let C [somewhere Ci, (i ∈ N)] denote a generic constant, not neces-
sarily the same at different occurrences, which depend on µ, β and the
measure of Ω, but it can be chosen as independent of t ∈ R+.

We define the energy function as

(1.4) E(t) =
1

2
‖ut‖22 +

1

2
‖∇ut‖22 +

1

2
‖∇u‖22 −

∫
Ω
F (u)dx,

where F (u) =

∫ u

0
f(s) ds. Multiplying (1.1) by ut and integrating the

result over Ω, and using Green’s formula, one can see that

(1.5)
d

dt
E(t) = −h1(t)

∫
Ω
g(ut)ut dx− h2(t)‖∇ut‖22.

We now present a result on existence and uniqueness of global weak
solution which can be established by the Faedo-Galerkin method as in
[26].

• Suppose that the nonlinear function g satisfies condition (G) and that
the damping coefficients hi (i = 1, 2) and nonlinearity f meet some
conditions which will be given in Sections 2 and 3. Then for given
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initial data (u0, u1) ∈ H1
0 (Ω) × H1

0 (Ω), problem (1.1)-(1.3) admits a
unique global solution u such that

(1.6) u ∈ C(R+;H1
0 (Ω)) and ut ∈ C(R+;H1

0 (Ω)).

The main results of this paper can be summarized as follows:

• Let h1(t) and h2(t) be the type of integrally positive or positive-
negative. If g and f satisfy (G) and (F1)-(F3) given in Section 2, respec-
tively, then all global bounded solutions of problem (1.1)-(1.3) converge
to a steady state.

• Let h1(t) and h2(t) be the type of on-off or positive-negative. If g
and f satisfy (G) and (F5) given in Section 3, respectively, then the
corresponding energy of problem (1.1)-(1.3) is asymptotically stable.

Remark 1.1. The definitions of on-off, integrally positive, and positive-
negative damping coefficients will be given in Sections 2 and 3 in detail.
However, the definitions of positive-negative in Subsections 2.2 and 3.2
are quite different from each other.

2. Convergence to a steady state

In this section, we present a convergence result on global solutions
to problem (1.1)-(1.3), when damping coefficients h1(t) and h2(t) satisfy
appropriate conditions. We first give the following reasonable assump-
tions on the nonlinearity f .

(F1): The function f is analytic in s,

(F2): sf(s) ≤ 0, ∀s ∈ R,
(F3): f(s) and f ′(s) are bounded in (−c, c) for all c > 0 if N =

1, 2, and f(s) is bounded in (−c, c) for all c > 0 and there exist
constants ρ0 ≥ 0 and µ > 0 such that (N − 2)µ < 4 and

|f ′(s)| ≤ ρ0(1 + |s|µ) a.e. s ∈ (−∞,∞),

if N ≥ 3.

Remark 2.1. It follows from (F2) that

F (s) =

∫ s

0
f(τ)dτ ≤ 0, ∀s ∈ R.



450 Su-Cheol Yi

The proof of our convergence depends on an appropriate new Lya-
punov function, compactness properties, and the  Lojasiewicz-Simon in-
equality for the energy functional eu : H1

0 (Ω)→ R given by

(2.1) eu(u) =
1

2
‖∇u‖22 −

∫
Ω
F (u)dx.

Proposition 2.2. ([9]) Suppose the assumptions (F1)-(F3) on f
hold. Then the energy function eu ∈ C2(H1

0 (Ω)) satisfies the  Lojasiewicz-
Simon inequality near every equilibrium point φ ∈ H1

0 (Ω); that is, for
every φ ∈ S, where

S = {φ ∈ H2(Ω) ∩H1
0 (Ω) : −∆φ+ f(φ) = 0},

there exist constants βφ, σφ > 0 and 0 < θφ ≤ 1
2 such that

|eu(φ)− eu(ψ)|1−θφ ≤ βφ‖∆ψ + f(ψ)‖∗
for all ψ ∈ H1

0 (Ω) with ‖φ− ψ‖H1
0 (Ω) < σφ. The number θφ is called the

 Lojasiewicz exponent of eu at φ.

We will try to prove convergence to equilibrium of any solution having
relatively compact range in the energy space. The following assumption
ensures the boundedness of any global solution for problem (1.1)-(1.3):

(F4): There exist constants λ, µ, and λ1 such that λ < µλ1, C > 0,
and

F (u) ≤ λu2

2
+ C for all u ∈ R,

where λ1 > 0 is the optimal constant of the Poincaré inequality

λ1‖u‖22 ≤ ‖∇u‖22, u ∈ H1
0 (Ω).

Proposition 2.3. Assume that u is a global solution of problem
(1.1)-(1.3) and (F4) holds. Then (u, ut) is bounded in H1

0 (Ω)×H1
0 (Ω).

We now present a lemma that plays a key role in the estimation of
convergence rate.

Lemma 2.4. ([10]) Suppose that v ∈ H1
0 (Ω), v ≥ 0 in [0, T ] and

v′(t) ≤ −C[v(t)]γ a.e. in [0, T ],

for all T > 0, where γ is a constant. Then
• if γ > 1, we have the inequality

v(t) ≤ Ct−χ, t ∈ [0, T ],

where χ = 1
γ−1 , and

• if γ = 1, we have the inequality

v(t) ≤ v(0)e−Ct, t ∈ [0, T ].
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2.1. The integrally positive case

We begin with the definition of integrally positive.

Definition 2.5. A function h : [0,+∞) → [0,+∞) is said to be
integrally positive, if for every ε > 0, there exists a constant η > 0 such
that ∫ t+ε

t
h(s) ds ≥ η, ∀t ≥ 0.

Remark 2.6. From the definition above, it can be seen that the
function h may vanish somewhere, but not on any interval. Furthermore,
it is clear that there exists a constant κ > 0 such that h(t) > κ a.e. in
R.

Our first main result, which is on the convergence of solutions to prob-
lem (1.1)-(1.3) when damping coefficients h1(t) and h2(t) are integrally
positive, can be given as follows:

Theorem 2.7. Suppose that h1(t) and h2(t) are integrally positive
functions satisfying (2.2) and that the nonlinear functions g and f satisfy
(G) and (F1)-(F3), respectively. Let u be a global solution of problem
(1.1)-(1.3) and assume also that

(T1): (u, ut) is bounded in H1
0 (Ω)×H1

0 (Ω),

(T2): {u(t) : t ≥ 0} is relatively compact in H1
0 (Ω).

Then there exists a function φ ∈ S such that

‖ut(t)‖H1
0 (Ω) + ‖u(t)− φ‖H1

0 (Ω) → 0,

as t → ∞. Furthermore, let θ = θφ be the  Lojasiewicz exponent of Eµ
at φ. Then the following assertions hold:
(i) If 0 < θ < 1

2 , we have

‖u(t)− φ‖H1
0 (Ω) = o(t−

θ
1−2θ ), t→∞,

(ii) If θ = 1
2 , we have

‖u(t)− φ‖H1
0 (Ω) = o(e−ζt), t→∞,

where ζ > 0.

To prove Theorem 2.7, we need to prove the following useful result:

Lemma 2.8. Assume that h1(t) and h2(t) are integrally positive func-
tions satisfying

(2.2) h2(t) ≥ α1h1(t), ∀t > 0,
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where α1 is a constant given in (G), and that the functions g and f
satisfy (G) and (F1)-(F3), respectively. If u is a solution of problem
(1.1)-(1.3), then

(2.3) lim
t→∞
‖ut‖22 = lim

t→∞
‖∇ut‖22 = 0.

Proof. It follows from (1.4) and (1.5) that there exists a constant
E∞ ≥ 0 such that

(2.4) lim
t→∞

E(t) = E∞.

Then there exist constants L1 and L2 in [0, 2E∞] such that

(2.5) lim sup
t→∞

‖ut‖22 = L1 and lim sup
t→∞

‖∇ut‖22 = L2.

We will show that L1 = L2 = 0 and for this, it suffices to show that
L1 + L2 = 0. Assume that L1 + L2 > 0.

We consider the following two cases:
Case1. ‖ut‖22 + ‖∇ut‖22 = L1 + L2, ∀t > 0.
From (1.5), (2.2) and (G), one can easily see that

0 < E∞ = E(0) +

∫ ∞
0

E′(τ) dτ

= E(0)−
∫ ∞

0

{
h1(τ)

∫
Ω
g(uτ )uτdx+ h2(τ)‖∇uτ‖22

}
dτ

≤ E(0)−
∫ ∞

0
α1h1(τ)(‖uτ‖22 + ‖∇uτ‖22) dτ.

(2.6)

Then, it follows from (2.6) that

(2.7) 0 < E∞ ≤ E(0)− (L1 + L2)α1

∫ ∞
0

h1(τ) dτ.

Since h1 is integrally positive, there exists a constant η > 0 such that

(2.8)

∫ n+1

n
h1(τ)dτ ≥ η, ∀n ∈ N.

Hence, combining (2.7) and (2.8), we have

0 < E∞ ≤ E(0)− (L1 + L2)α1

∞∑
n=1

η = −∞,

which is a contradiction.
Case2. ‖ut‖22 + ‖∇ut‖22 6= L1 + L2.
We set

(2.9) lim inf
t→∞

(‖ut‖22 + ‖∇ut‖22) = l ∈ [0, L1 + L2).
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Since u ∈ C1([0, T ];H1
0 (Ω)), there exist two sequences {tn}n∈N and

{t̄n}n∈N such that

• tn →∞, n→∞,
• 0 < tn < t̄n < tn+1, ∀n ∈ N,

• L1 + L2 + l

2
= ‖ut(tn)‖22 + ‖∇ut(tn)‖22

≤ ‖ut(t̄n)‖22 + ‖∇ut(t̄n)‖22 =
3(L1 + L2) + l

4
, ∀n ∈ N,

• L1 + L2 + l

2
≤ ‖ut‖22 + ‖∇ut‖22 ≤

3(L1 + L2) + l

4
, ∀t ∈ (tn, t̄n),

by (1.6), (2.5), and (2.9). By equation (1.1) and the definition of weak
solution, it can be shown that

d

dt
(‖ut‖22 + ‖∇ut‖22) = 2(ut, utt −∆utt)2

= 2(ut,∆u− h1(t)g(ut) + h2(t)∆ut + f(u))2

≤ 2‖∇ut‖2‖∇u‖2 + 2‖ut‖2‖f(u)‖2
≤ K.

(2.10)

Integrating the inequality above over (tn, t̄n), we have

K(tn − t̄n) ≥
∫ t̄n

tn

d

dt
(‖ut‖22 + ‖∇ut‖22) dt

= (‖ut(t̄n)‖22 + ‖∇ut(t̄n)‖22)− (‖ut(tn)‖22 + ‖∇ut(tn)‖22)

=
3(L1 + L2) + l

4
− L1 + L2 + l

2

=
L1 + L2 − l

4
,

i.e.,

(2.11) tn − t̄n ≥
L1 + L2 − l

4K
, ∀n ∈ N.

By (2.6) and (2.11), we can obtain the inequalities

0 < E∞ ≤ E(0)−
∫
⋃

(tn,tn+
L1+L2−l

4K
)
h1(τ)α1(‖uτ‖22 + ‖∇uτ‖22) dτ.
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Since L1+L2+l
2 ≤ ‖ut‖22 + ‖∇ut‖22, ∀t ∈

(
tn, tn + L1+L2−l

4K

)
and h1 is

integrally positive, there exists a constant η > 0 such that

(2.12)

∫ tn+
L1+L2−l

4K

tn

h1(τ)dτ ≥ η, ∀n ∈ N.

Therefore, we can derive the inequality

0 < E(0)− L1 + L2 + l

2
α1

∞∑
n=1

η = −∞,

which is a contradiction. Moreover, we have

(2.13) lim inf
t→∞

(‖ut‖22 + ‖∇ut‖22) = L1 + L2,

which implies that

(2.14) lim
t→∞

(‖ut‖22 + ‖∇ut‖22) = L1 + L2,

by (2.5).
Now, we are in the position to prove L1 +L2 = 0. By virtue of (2.14),

there exists a constant T > 0 such that

(2.15) ‖ut‖22 + ‖∇ut‖22 ≥
L1 + L2

2
,

for all t ≥ T. Combining (2.6) and (2.15), one can see that

0 < E∞ ≤ E(0)−
(
L1 + L2

2

)
α1

∫ ∞
T

h1(τ)dτ.

Since h1 is integrally positive, there exists a constant η > 0 such that∫ n+1

n
h1(τ)dτ ≥ η, ∀n ∈ N,

and hence, we have the inequality

0 < E(0)− L1 + L2

2
α1

∞∑
n=1

η = −∞,

which is a contradiction. Therefore, we have L1 +L2 = 0, which implies
L1 = L2 = 0.

Remark 2.9. In the proof of the previous result we can also obtain

lim
t→∞

eu(t) = E∞,

where eu is the energy functional given in (2.1).
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The proof of Theorem 2.7
We divide our proof into 4 steps.

Step 1. Let us recall the ω−limit set of the global solution u : R+ →
H1

0 (Ω) to problem (1.1)-(1.3), which is defined as

ω(u) =
{
φ ∈ H1

0 (Ω) : ∃tn → +∞ such that lim
n→∞

‖u(tn)− φ‖H1
0 (Ω) = 0

}
.

It has been shown that
• ω(u) is a non-empty, compact and connected subset of H1

0 (Ω),
• For ∀φ ∈ ω(u), we have −∆φ = f(φ), i.e., ω(u) ⊆ S,
• eu(t) is a constant over ω(u),

see [8].
Step 2. Without loss of generality, we assume that h(t) > κ for all
t ∈ R, and define the Lyapunov functional as

H(t) = E(t)− ε(∆u+ f(u), ut −∆ut)∗,

where E(t) is the energy function given in (1.4) and ε > 0 is a constant
which will be specified later.

We first estimate H ′(t).
By (1.5) and a direct calculation, one can see that

H ′(t) ≤− h1(t)

∫
Ω
g(ut)ut dx

− h2(t)‖∇ut‖22 − ε(∆ut + f ′(u)ut, ut −∆ut)∗

− ε(∆u+ f(u),∆u+ f(u)− h1(t)g(ut) + h2(t)∆ut)∗

≤− α1h1(t)‖ut‖22 − h2(t)‖∇ut‖22
− ε(∆ut + f ′(u)ut, ut −∆ut)∗

− ε

2
‖∆u+ f(u)‖2∗ +

ε

2
‖ − h1(t)g(ut) + h2(t)∆ut‖2∗.

(2.16)

For N ≥ 3 and 0 < µ < 4
N−2 , it can be seen that

‖f ′(u)ut‖∗

≤C sup
‖ϕ‖

H1
0(Ω)
≤1

(∫
Ω
|utϕ|dx+

∫
Ω
|u|µ|ut||ϕ| dx

)
≤C sup

‖ϕ‖
H1

0(Ω)
≤1

(
‖ut‖2‖ϕ‖2 + ‖ut‖ 2N

N−2
‖ϕ‖ 2N

N−2
‖uµ‖N

2

)
≤C‖∇ut‖2,

(2.17)

by using (F3) and the boundedness of u in H1
0 (Ω).
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For N = 1, 2, we can also derive the estimate above by setting µ = 1
in (F3). Moreover, a direct calculation yields the following estimate:

‖∆ut‖∗ ≤C sup
‖ϕ‖

H1
0(Ω)
≤1

∫
Ω
|∆utϕ| dx

≤C sup
‖ϕ‖

H1
0(Ω)
≤1

∫
Ω
|∇ut · ∇ϕ| dx

≤C sup
‖ϕ‖

H1
0(Ω)
≤1
‖∇ut‖2‖∇ϕ‖2

≤C‖∇ut‖2.

(2.18)

Similarly, we can have the inequality

‖∆u‖∗ ≤ C‖∇u‖2.

By virtue of the inequality above and (2.18) and using the bounded-
ness of f(u) in (F3), one can see that

(∆u+ f(u), ut −∆ut)∗ ≤ C(‖ut‖22 + ‖∇ut‖22 + ‖∇u‖22),

and hence, H(t) ≥ 0 for ε > 0 small enough. Combining (2.16)-(2.18)
and choosing ε > 0 small enough, we have the inequalities

H ′(t) ≤− C(‖ut‖22 + ‖∇ut‖22 + ‖∆u+ f(u)‖2∗)
≤− C{‖ut‖H1

0 (Ω) + ‖∆u+ f(u)‖∗}2,
(2.19)

for all t ≥ T1. Then H(t) is non-negative and non-increasing on [T1,∞),
and hence, H(t) has a limit at infinity. Since φ ∈ ω(u), there exists a
sequence {tn}n≥1 such that

(2.20) lim
n→∞

tn =∞ and lim
n→∞

u(tn) = φ in H1
0 (Ω).

And we can also have

(2.21) lim
n→∞

eu(tn) = eu(φ).

We now estimate [H(t)− eu(φ)]1−θ.

It follows from Young’s inequality that

[H(t)− eu(φ)]1−θ ≤ ‖ut‖2(1−θ)
2 + ‖∇ut‖2(1−θ)

2 + |eu(u)− eu(φ)|1−θ

+ ‖∆u+ f(u)‖∗ + ‖ut −∆ut‖
1−θ
θ
∗ .
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Noting that 2(1 − θ) > 1, 1−θ
θ > 1 and using (2.3), one can see that

there exists a constant T2 > T1 such that for all t > T2

[H(t)− eu(φ)]1−θ(2.22)

≤ C{‖ut‖H1
0 (Ω) + |eu(u)− eu(φ)|1−θ + ‖∆u+ f(u)‖∗}.

Step 3. It has been shown that H(t) has a limit at infinity and, by
means of (2.19), we have for all δ > 0 with δ � σφ, there exists an N
such that tN > T2,

(2.23) ‖u(tN )− φ‖H1
0 (Ω) <

δ

2
,

(2.24)
C

θ
{[H(tN )− eu(φ)]θ − [H(t)− eu(φ)]θ} < δ

2
,

and

(2.25) H(t) ≥ eu(φ),

for all t ≥ tN .
Let

t̄ = sup{t ≥ tN : ‖u(s)− φ‖H1
0 (Ω) < σφ, ∀s ∈ [tN , t]}.

By Proposition 2.2 and (2.22), we have the inequality

(2.26) [H(t)− eu(φ)]1−θ ≤ 2C{‖ut‖H1
0 (Ω) + ‖∆u+ f(u)‖∗},

for all t ∈ [tN , t̄). Moreover, by a direct calculation, we can derive the
equation

(2.27) − d

dt
[H(t)− Eµ(φ)]θ = −θ[H(t)− Eµ(φ)]θ−1H ′(t).

Combining (2.19), (2.26) and (2.27), it can be shown that

(2.28) − d

dt
[H(t)− eu(φ)]θ ≥ θC{‖ut‖H1

0 (Ω) + ‖µ∆u+ f(u)‖∗}.

Integrating (2.28) over [tN , t̄), one can have the inequalities∫ t̄

tN

‖ut‖H1
0 (Ω)dt ≤

∫ t̄

tN

{‖ut‖H1
0 (Ω) + ‖µ∆u+ f(u)‖∗}

≤C
θ
{[H(tN )− eu(φ)]θ − [H(t)− eu(φ)]θ}.

(2.29)

Assuming t̄ <∞, we get the inequality

‖u(t̄)− φ‖H1
0 (Ω) ≤

∫ t̄

tN

‖ut‖H1
0 (Ω)dt+ ‖u(tN )− φ‖H1

0 (Ω) ≤ δ,
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by (2.14), (2.23) and (2.29), which contradicts the definition of t̄. There-
fore, t̄ =∞. Then it follows from (2.29) that∫ ∞

tN

‖ut‖H1
0 (Ω)dt <∞,

which implies the integrability of u in H1
0 (Ω). By the compactness of

the range of u, we have

lim
t→∞
‖u(t)− φ‖H1

0 (Ω) = 0.

Step4. By (2.19) and (2.26), there exists a constant C > 0 such that

(2.30)
d

dt
[H(t)− eu(φ)] + C[H(t)− eu(φ)]2(1−θ) ≤ 0,

for all t ≥ T = tN . We need to consider the following two cases:
Case1. 0 < θ < 1

2 ⇒ 1 < 2(1− θ) < 2.
By Lemma 2.4, one can see that for all t ≥ T

H(t)− eu(φ) ≤ Ct−
1

1−2θ .

Integrating (2.28) over (t,∞), t ≥ T , we have the inequalities∫ ∞
t
{‖uτ‖H1

0 (Ω) + ‖∆u+ f(u)‖∗}dτ

≤C
θ
{[H(tN )− eu(φ)]θ − [H(t)− eu(φ)]θ} ≤ Ct−

θ
1−2θ .

It then follows that

‖u(t)− φ‖H1
0 (Ω) ≤

∫ ∞
t
‖uτ‖H1

0 (Ω) dτ ≤ Ct
− θ

1−2θ .

Case2. θ = 1
2 ⇒ 2(1− θ) = 1.

By Lemma 2.4, it can be seen that for all t ≥ T
H(t)− eu(φ) ≤ Ce−Ct.

Integrating (2.28) over (t,∞) for t ≥ T , we have the inequalities∫ ∞
t
{‖uτ‖H1

0 (Ω) + ‖∆u+ f(u)‖∗} dτ

≤ C

θ
{[H(tN )− eu(φ)]θ − [H(t)− eu(φ)]θ}

≤ Ce−Ct.
Then we obtain the inequalities

‖u(t)− φ‖H1
0 (Ω) ≤

∫ ∞
t
‖uτ‖H1

0 (Ω)dτ ≤ Ce−Ct,
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which completes the proof.

2.2. The case of positive-negative

We begin with the definition of positive-negative.

Definition 2.10. Let {In}n∈N be a sequence of disjoint intervals in
(0,∞), where In = (an, bn), a1 = 0, bn = an+1, and an →∞ as n→∞.
We say that a function h : [0,+∞)→ R is in the positive-negative case,
if for all n ∈ N , there exist constants mn and Mn such that

0 < mn ≤Mn <∞ and mn ≤ h(t) ≤Mn,

for all t ∈ In.

Remark 2.11. This kind of intermitting damping may change sign
at the discontinuous points. If h(bn) = 0 at all the discontinuous points,
we say this damping is in on-off case.

One can obtain the following theorem on the convergence to equi-
librium, when h1(t) and h2(t) are positive-negative by using the same
argument as in the proof of Theorem 2.7, and hence, we omit the proof.

Theorem 2.12. Suppose that h1(t) and h2(t) are positive-negative
functions satisfying (2.2), and g and f satisfy (G) and (F1)-(F3), re-
spectively. Let u be a global solution of problem (1.1)-(1.3), and assume
that

(T1): (u, ut) is bounded in H1
0 (Ω)×H1

0 (Ω),

(T2): {u(t) : t ≥ 0} is relatively compact in H1
0 (Ω).

Then there exists a function φ ∈ S such that

‖ut(t)‖H1
0 (Ω) + ‖u(t)− φ‖H1

0 (Ω) → 0,

as t → ∞. Furthermore, let θ = θφ be the  Lojasiewicz exponent of Eµ
at φ. Then the following assertions hold:
(i) If 0 < θ < 1

2 , we have

‖u(t)− φ‖H1
0 (Ω) = o(t−

θ
1−2θ ), t→∞,

(ii) If θ = 1
2 , we have

‖u(t)− φ‖H1
0 (Ω) = o(e−ζt), t→∞,

where ζ is a positive constant.
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2.3. Boundedness of global solutions

In this subsection, we present a boundedness for global solutions to
problem (1.1)-(1.3) under the assumption (F4). We give a proof of
Proposition 2.3 as follows:

Proof. The energy function E given in (1.4) is nonincreasing by (1.5).
Based on the condition (F3), we can have the inequality∣∣∣∣∫

Ω
F (u) dx

∣∣∣∣ ≤ C (1 + ‖u0‖µ+2
H1

0 (Ω)

)
,

where C ≥ 0 is a constant depending on the constant in (F3), the
measure of Ω, and the constant of the embedding H1

0 (Ω) ↪→ Lµ+2(Ω).
According to the inequality above and the definition of E, there exists
a constant C1 ≥ 0 such that

(2.31) E(0) ≤ C1

(
1 + ‖∇u0‖22 + ‖∇u1‖22 + ‖u0‖µ+2

H1
0 (Ω)

)
.

On the other hand, it follows from the definition of E and the condi-
tion (F4) that there exist positive constants C2 and C3 such that

(2.32) ‖∇u(t)‖22 + ‖∇ut(t)‖22 ≤ C2E(t) + C3.

Combining (2.31) and (2.32), and using the nonincreasing property of
E, one can obtain the result.

3. Asymptotic stability

In this section, we investigate the asymptotic stability of energy for
problem (1.1)-(1.3). We first give the following reasonable condition on
the nonlinearity f .

(F5): f is a C1-function on R such that

sf(s) ≤ F (s) ≤ 0, ∀s ∈ R,

where F (s) =

∫ s

0
f(τ) dτ.

In order to establish a result related with the estimate of energy decay
on a short closed time interval, we make the following assumption on
damping coefficients:

(H): Suppose that a and b are constants with 0 ≤ a < b and that
there exist constants m1 and M1 with 0 < m1 ≤ M1 such that
h1(t), h2(t) > 0 and

m1 ≤ h1(t) + h2(t) ≤M1, ∀t ∈ [a, b].
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Remark 3.1. It follows from (G) and (H) that for all v ∈ L2(Ω)

(3.1) m1α1‖v‖22 ≤
∫

Ω
h1(t)g(v)v dx, ∀t ∈ [a, b],

(3.2)

∫
Ω

[h1(t)g(v)]2 dx ≤M1α2

∫
Ω
h1(t)g(v)v dx, ∀t ∈ [a, b].

We present the following proposition, which plays a key role in the
proof of the result on asymptotic stability:

Proposition 3.2. Suppose that g and f satisfy (G) and (F5), re-
spectively, and that h1(t) and h2(t) admit to (H). If (u0, u1) ∈ H1

0 (Ω)×
H1

0 (Ω), then the solution u of problem (1.1)-(1.3) satisfies the inequality

E(b) ≤ 1

1 + 16α1
15(B2+α1)

· m1(b−a)3

256+
{

3(1+α1)

B2+α1
+

4α1(1+α2B
2)

B2+α1
M1m1

}
(b−a)2

E(a).

Proof. Setting θ(t) = (t− a)2(b− t)2, ∀t ∈ [a, b], we have

(3.3) |θ′(t)| ≤ 2Tθ
1
2 (t), max

t∈[a,b]
θ(t) =

T 4

16
, and

∫ b

a
θ(t)dt =

T 5

30
,

where T = b−a. Multiplying (1.1) by θu and integrating the result over
[a, b]× Ω by using integration by parts, one can see that∫ b

a
θ‖∇u‖22 dt

=

∫ b

a
θ‖ut‖22 dt+

∫ b

a
θ‖∇ut‖22dt+

∫ b

a

∫
Ω
θ′uut dxdt

+

∫ b

a

∫
Ω
θ′∇u · ∇ut dxdt−

∫ b

a

∫
Ω
h1(t)θug(ut) dxdt

−
∫ b

a

∫
Ω
h2(t)θ∇u · ∇ut dxdt+

∫ b

a

∫
Ω
θuf(u) dxdt.

(3.4)

With Hölder’s and Young’s inequalities and (3.3), one can obtain the
inequalities∫ b

a

∫
Ω
θ′uut dxdt ≤ ε1

∫ b

a
(θ′)2‖u‖22 dt+

1

4ε1

∫ b

a
‖ut‖22 dt

≤ 4T 2B2ε1

∫ b

a
θ‖∇u‖22 dt+ 4ε1

∫ b

a
‖ut‖22 dt,

(3.5)
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a

∫
Ω
θ′∇u · ∇ut dxdt

≤ ε2

∫ b

a
(θ′)2‖∇u‖22 dt+

1

4ε2

∫ b

a
‖∇ut‖22 dt

≤ 4T 2ε2

∫ b

a
θ‖∇u‖22 dt+

1

4ε2

∫ b

a
‖∇ut‖22 dt,

(3.6)

∣∣∣∣−∫ b

a

∫
Ω
h1(t)θug(ut) dxdt

∣∣∣∣
≤ ε3

∫ b

a
θ‖u‖22 dt+

1

4ε3

∫ b

a

∫
Ω
θ[h1(t)g(ut)]

2 dxdt

≤ ε3B
2

∫ b

a
θ‖∇u‖22 dt+

1

4ε3

∫ b

a

∫
Ω
θ[h1(t)g(ut)]

2 dxdt,

(3.7)

∣∣∣∣−∫ b

a

∫
Ω
θh2(t)∇u · ∇ut dxdt

∣∣∣∣
≤ ε4

∫ b

a
θ‖∇u‖22dt+

1

4ε4

∫ b

a
θ[h2(t)]2‖∇ut‖22 dt,

(3.8)

where εi > 0, (i = 1, 2, 3, 4) are constants which will be specified later.
It can be shown that

[1− 4T 2B2ε1 − 4T 2ε2 −B2ε3 − ε4]

∫ b

a
θ‖∇u‖22 dt

≤
(
T 4

16
+

1

4ε1

)∫ b

a
‖ut‖22 dt+

(
T 4

16
+

1

4ε2

)∫ b

a
‖∇ut‖22 dt

+
T 4

64ε3

∫ b

a

∫
Ω

[h1(t)g(ut)]
2 dxdt+

T 4

64ε4

∫ b

a
θ[h2(t)]2‖∇ut‖22 dt

+

∫ b

a

∫
Ω
θuf(u) dxdt,

(3.9)
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by substituting (3.5)-(3.8) into (3.4) and using (3.3). By setting 4T 2B2ε1 =
4T 2ε2 = B2ε3 = ε4 = 1

8 in (3.9), we obtain the inequality

1

2

∫ b

a
θ‖∇u‖22 dt

≤
(
T 4

16
+ 8B2T 2

)∫ b

a
‖ut‖22 dt+

(
T 4

16
+ 8T 2

)∫ b

a
‖∇ut‖22 dt

+
B2T 4

8

∫ b

a

∫
Ω

[h1(t)g(ut)]
2 dxdt+

T 4

8

∫ b

a
[h2(t)]2‖∇ut‖22 dt

+

∫ b

a

∫
Ω
θuf(u) dxdt.

(3.10)

On the other hand, multiplying (1.4) by θ, integrating the result
over [a, b], noting that E(t) is nonincreasing on [a, b] by (1.5), and then
employing (3.3), one can have the inequality

T 5

30
E(b) ≤ 1

2

∫ b

a
θ‖∇u‖22 dt+

T 4

32

∫ b

a
‖ut‖22 dt

+
T 4

32

∫ b

a
‖∇ut‖22 dt−

∫ b

a

∫
Ω
θF (u) dxdt.

(3.11)

Hence, combining (3.10) and (3.11), we have the inequalities

T 5

30
E(b) ≤

(
T 4

32
+
T 4

16
+ 8B2T 2

)∫ b

a
‖ut‖22 dt

+

(
T 4

32
+
T 4

16
+ 8T 2

)∫ b

a
‖∇ut‖22 dt+

B2T 4

8

∫ b

a

∫
Ω

[h1(t)g(ut)]
2 dxdt

+
T 4

8

∫ b

a
[h2(t)]2‖∇ut‖22 dt −

∫ b

a

∫
Ω
θ[uf(u)− F (u)] dxdt

≤
[

1

m1α1

(
3T 4

32
+ 8B2T 2

)
+
M1B

2α2T
4

8

] ∫ b

a

∫
Ω
h1(t)g(ut)ut dxdt

+

[
1

m1

(
3T 4

32
+ 8T 2

)
+
M1T

4

8

] ∫ b

a
[h2(t)]2‖∇ut‖22 dt

≤
{[

3(1 + α1)

32m1α1
+
M1(1 + α2B

2)

8

]
T 4 +

8(B2 + α1)

m1α1
T 2

}
[E(a)− E(b)],

from which one can easily obtain the result by a simple calculation.
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3.1. The case of on-off

We prove the stability result in this subsection, when damping coef-
ficients are on-off. We begin with the definition of on-off case.

Definition 3.3. Let {In}n∈N be a sequence of disjoint intervals in
(0,∞) such that In = (an, bn), a1 = 0, bn ≤ an+1, and an → ∞ as
n→∞. Then we say that a function h : [0,+∞)→ R is in on-off case,
if for all n ∈ N , there exist constants mn and Mn such that

0 < mn ≤Mn <∞ and mn ≤ h(t) ≤Mn,

for all t ∈ In.

Theorem 3.4. Suppose that (u0, u1) ∈ H1
0 (Ω) × H1

0 (Ω) and that
h1(t), h2(t) ≥ 0 and h1(t) + h2(t) is in the on-off case, i.e., there exist
constants mn an Mn such that 0 < mn ≤Mn and

(3.12) mn ≤ h1(t) + h2(t) ≤Mn, ∀t ∈ (an, bn).

If

(3.13)
∞∑
n=1

mn(bn − an) min

{
(bn − an)2,

1

1 +Mnmn

}
=∞,

then the solution u of problem (1.1)-(1.3) satisfies

E(t)→ 0 as t→∞.

Proof. For n ≥ 0, we can obtain the inequality

(3.14) E(bn) ≤ 1

1 + c1kn
E(an),

by applying Proposition 3.2 to the interval (an, bn) instead of (a, b),

where c1 = 16α1
15(B2+α1)

, kn = mnT 3
n

256+dnT 2
n

, dn = 3(1+α1)
B2+α1

+ 4α1(1+α2B2)
B2+α1

Mnmn,

and Tn = bn − an. Since E(t) is nonincreasing by (1.5), we have the
inequalities

(3.15) E(an+1) ≤ E(bn) ≤ E(an)

1 + c1kn
≤

n∏
i=1

E(a0)

1 + c1ki
≤

n∏
i=1

E(0)

1 + c1ki
,

by inequality (3.14). Theorem 3.4 holds, if E(an+1) → 0 as n → ∞,
and hence, it suffices to show that

∏∞
i=1

1
1+c1ki

= 0 or equivalently∑∞
i=1 ln( 1

1+c1ki
) = 0. It is clear that if ki → 0 as i→∞, the result holds,

and while if ki → 0, its proof reduces to showing that
∑∞

i=1 ki =∞. In
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fact, kn ≥ mnTn
2 min

{
T 2
n

256 ,
1
dn

}
if dn ≥ 256

T 2
n

, and kn ≥ mnTn
2 min

{
T 2
n

256 ,
1
dn

}
if dn ≤ 256

T 2
n

. Thus, we have

mnTn
2

min

{
T 2
n

256
,

1

dn

}
≤ kn =

mnT
3
n

256 + dnT 2
n

≤ mnTn min

{
T 2
n

256
,

1

dn

}
,

from which the desired result follows.

3.2. The case of positive-negative

The definition of positive-negative in this subsection in quite different
from the one in Subsection 2.2.

Definition 3.5. Let {tn} be a strictly increasing sequence on (0,∞)
with tn ∈ N and tn →∞ as n→∞. For all n ∈ N , let I2n = (t2n, t2n+1),
I2n+1 = (t2n+1, t2n+2), and let Tn be the length of In. We say that a
function h(t) is in the case of positive-negative, if for all n ∈ N , there
exist constants m2n, M2n, and M2n+1 > 0 such that

m2n ≤ h(t) ≤M2n, ∀t ∈ I2n,

−M2n+1 ≤ h(t) ≤ 0, ∀t ∈ I2n+1.

Theorem 3.6. Suppose that (u0, u1) ∈ H1
0 (Ω) × H1

0 (Ω) and that
for all n ∈ N , h1(t) and h2(t) have the same sign and h1(t) + h2(t) is
in the positive-negative case, i.e., there exist constants m2n, M2n, and
M2n+1 > 0 such that

(3.16) m2n ≤ h1(t) + h2(t) ≤M2n, ∀t ∈ I2n,

(3.17) −M2n+1 ≤ h1(t) + h2(t) ≤ 0, ∀t ∈ I2n+1.

If
∞∑
n=0

M2n+1T2n+1 <∞ and
∞∑
n=0

m2nT2n min

{
T 2

2n,
1

1 +M2nm2n

}
=∞,

then the solution u of problem (1.1)-(1.3) satisfies

E(t)→ 0 as t→∞.

Remark 3.7. It follows from the assumptions of Theorem 3.6 that
the energy function E(t) is decreasing on I2n and increasing on I2n+1.

Proof. For n ∈ N , employing Theorem 3.4 on I2n, one can see that

(3.18) E(t2n+1) ≤ 1

1 + c1k2n
E(t2n),
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where k2n =
m2nT 3

2n

256+{ 3(1+α1)

B2+α1
+

4α1(1+α2B
2)

B2+α1
M2nm2n}

T 2
2n and T2n = t2n+1 − t2n.

On the other hand, applying (1.4), (1.5) and (3.17) to I2n+1, we can
have the inequalities

E′(t) ≤− h1(t)

∫
Ω
g(ut)utdx− h2(t)‖∇ut‖22

≤− h1(t)α1‖ut‖22 − h2(t)‖∇ut‖22
≤2M2n+1α1E(t),

and hence, we get the inequality

E(t2n+2) ≤ E(t2n+1)e2α1M2n+1T2n+1 ,

which implies that

E(t2n+2) ≤

[
n∏
i=0

eM2i+1T2i+1

(
1

1 + c1k2i

)]
e2α1E(0),

by inequality (3.18).

We can obtain the desired result if
∏n
i=0 e

M2i+1T2i+1

(
1

1+c1k2i

)
= 0,

and this condition is equivalent to

(3.19)

n∑
i=1

[M2i+1T2i+1 − ln(1 + c1k2i)] = −∞.

In particular, if we assume
∞∑
i=0

M2i+1T2i+1 <∞ and
∞∑
i=0

m2iT2i min

{
T 2

2i,
1

1 +M2im2i

}
=∞,

the condition (3.19) holds. The proof is completed.
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